Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
C
CONF
Project
Project
Details
Activity
Releases
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Registry
Registry
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
UvA
CONF
Commits
9bbf46f7
Commit
9bbf46f7
authored
Mar 14, 2017
by
Spiros Koulouzis
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Cleanup
parent
e56b5026
Changes
8
Show whitespace changes
Inline
Side-by-side
Showing
8 changed files
with
0 additions
and
690 deletions
+0
-690
drip-deployer.tar.gz
drip-deployer.tar.gz
+0
-0
cluster_file
drip-deployer/cluster_file
+0
-2
drip-planner.tar.gz
drip-planner.tar.gz
+0
-0
input.json
drip-planner2provisioner/input.json
+0
-27
ICPCP.py
drip-simple_planner/ICPCP.py
+0
-391
NewInstance.py
drip-simple_planner/NewInstance.py
+0
-7
rpc_server.py
drip-simple_planner/rpc_server.py
+0
-131
server.py
drip-simple_planner/server.py
+0
-132
No files found.
drip-deployer.tar.gz
deleted
100644 → 0
View file @
e56b5026
File deleted
drip-deployer/cluster_file
deleted
100644 → 0
View file @
e56b5026
54.236.37.228 ubuntu /tmp/1 master
54.236.8.78 ubuntu /tmp/2 slave
drip-planner.tar.gz
deleted
100644 → 0
View file @
e56b5026
File deleted
drip-planner2provisioner/input.json
deleted
100644 → 0
View file @
e56b5026
{
"creationDate"
:
1488459287833
,
"parameters"
:
[
{
"url"
:
null
,
"attributes"
:
null
,
"value"
:
[
{
"name"
:
"2d13d708e3a9441ab8336ce874e08dd1"
,
"size"
:
"Small"
,
"docker"
:
"mogswitch/InputDistributor"
},
{
"name"
:
"8fcc1788d9ee462c826572c79fdb2a6a"
,
"size"
:
"Small"
,
"docker"
:
"mogswitch/InputDistributor"
},
{
"name"
:
"5e0add703c8a43938a39301f572e46c0"
,
"size"
:
"Small"
,
"docker"
:
"mogswitch/InputDistributor"
}
],
"encoding"
:
"UTF-8"
}
]
}
\ No newline at end of file
drip-simple_planner/ICPCP.py
deleted
100644 → 0
View file @
e56b5026
'''
Created on Nov 20, 2015
@author: junchao
'''
import
os
import
sys
import
re
import
random
import
networkx
as
nx
import
numpy
as
np
import
json
from
subprocess
import
call
import
time
from
NewInstance
import
NewInstance
import
collections
class
Workflow
():
def
add_entry_exit
(
self
,
g
):
# add entry node to the graph
g
.
add_node
(
0
,
est
=
-
1
,
eft
=
-
1
,
lft
=-
1
)
for
vertex
in
g
:
if
len
(
g
.
predecessors
(
vertex
))
==
0
and
not
vertex
==
0
:
self
.
G
.
add_weighted_edges_from
([(
0
,
vertex
,
0
)])
# add exit node to the graph
g
.
add_node
(
self
.
vertex_num
-
1
,
est
=
-
1
,
eft
=
-
1
,
lft
=-
1
)
startnodes
=
[]
for
vertex
in
g
:
if
len
(
g
.
successors
(
vertex
))
==
0
and
not
vertex
==
self
.
vertex_num
-
1
:
startnodes
.
append
(
vertex
)
for
node
in
startnodes
:
self
.
G
.
add_weighted_edges_from
([(
node
,
self
.
vertex_num
-
1
,
0
)])
def
init
(
self
,
content
):
self
.
G
=
nx
.
DiGraph
()
self
.
vertex_num
=
0
for
(
key
,
value
)
in
content
[
'workflow'
]
.
items
():
if
isinstance
(
value
,
list
)
:
if
key
==
'nodes'
:
self
.
vertex_num
=
len
(
value
)
for
node
in
value
:
self
.
G
.
add_node
(
node
[
'name'
],
est
=
-
1
,
eft
=
-
1
,
lft
=-
1
)
if
key
==
'links'
:
for
link
in
value
:
self
.
G
.
add_weighted_edges_from
([(
link
[
'source'
],
link
[
'target'
],
link
[
'weight'
])])
print
self
.
G
.
nodes
#parse the performance matrix
p
=
[]
od
=
collections
.
OrderedDict
(
sorted
(
content
[
'performance'
]
.
items
()))
for
(
key
,
value
)
in
od
.
items
():
row
=
[]
row
.
append
(
0
)
for
i
in
value
.
split
(
','
):
row
.
append
(
int
(
i
))
row
.
append
(
0
)
print
row
p
.
append
(
row
)
self
.
p_table
=
np
.
matrix
(
p
)
#parse the price vector
self
.
vm_price
=
[]
for
i
in
content
[
'price'
]
.
split
(
','
):
self
.
vm_price
.
append
(
int
(
i
))
#parse the deadline
self
.
d_list
=
[]
for
(
key
,
value
)
in
content
[
'deadline'
]
.
items
():
self
.
d_list
.
append
([
int
(
key
),
int
(
value
)])
self
.
d_table
=
np
.
matrix
(
self
.
d_list
)
self
.
successful
=
0
self
.
vertex_num
+=
2
self
.
add_entry_exit
(
self
.
G
)
#test whether the DAG contains cycles
if
len
(
list
(
nx
.
simple_cycles
(
self
.
G
)))
>
0
:
print
"the DAG contains cycles"
sys
.
exit
()
self
.
assigned_list
=
[
-
1
]
*
(
self
.
vertex_num
)
self
.
instances
=
[]
self
.
G
.
node
[
0
][
'est'
]
=
0
self
.
G
.
node
[
0
][
'eft'
]
=
0
self
.
cal_est
(
0
)
self
.
G
.
node
[
self
.
vertex_num
-
1
][
'lft'
]
=
self
.
d_table
[
self
.
d_table
.
shape
[
0
]
-
1
,
1
]
#self.p_table[0, child], self.p_table.shape[0]
self
.
cal_lft
(
self
.
vertex_num
-
1
)
def
init1
(
self
,
workflow_file_name
,
performance_file_name
,
price_file_name
,
deadline_file_name
):
#Initialization
self
.
G
=
nx
.
DiGraph
()
self
.
vertex_num
=
0
self
.
successful
=
0
#Read the workflow information
graph
=
pydot
.
graph_from_dot_file
(
workflow_file_name
)
nx_graph
=
nx
.
from_pydot
(
graph
)
self
.
G
=
nx
.
DiGraph
()
for
node
in
nx_graph
:
#print node
self
.
G
.
add_node
(
int
(
node
)
+
1
,
est
=
-
1
,
eft
=
-
1
,
lft
=-
1
)
self
.
vertex_num
+=
1
#print nx_graph.edge
#print workflow_file_name
for
link
in
nx_graph
.
edges_iter
():
#print link[0], link[1]
self
.
G
.
add_weighted_edges_from
([(
int
(
link
[
0
])
+
1
,
int
(
link
[
1
])
+
1
,
int
(
float
(
nx_graph
[
link
[
0
]][
link
[
1
]][
0
][
'weight'
])))])
self
.
vertex_num
+=
2
self
.
add_entry_exit
(
self
.
G
)
#test whether the DAG contains cycles
if
len
(
list
(
nx
.
simple_cycles
(
self
.
G
)))
>
0
:
print
"the DAG contains cycles"
sys
.
exit
()
#read performance table
l
=
[
map
(
int
,
line
.
split
(
','
))
for
line
in
open
(
performance_file_name
,
'r'
)]
#append the entry and exit node information
for
row
in
l
:
row
.
insert
(
0
,
0
)
row
.
insert
(
len
(
row
),
0
)
self
.
p_table
=
np
.
matrix
(
l
)
self
.
assigned_list
=
[
-
1
]
*
(
self
.
vertex_num
)
self
.
vm_price
=
map
(
int
,
open
(
price_file_name
,
'r'
)
.
readline
()
.
split
(
','
))
self
.
instances
=
[]
self
.
d_list
=
[
map
(
int
,
line
.
split
(
'
\t
'
))
for
line
in
open
(
deadline_file_name
,
'r'
)]
tmpList
=
self
.
d_list
[
len
(
self
.
d_list
)
-
1
]
self
.
d_table
=
np
.
matrix
(
tmpList
)
#deadline = open(deadline_file_name, 'r').readline()
self
.
G
.
node
[
0
][
'est'
]
=
0
self
.
G
.
node
[
0
][
'eft'
]
=
0
self
.
cal_est
(
0
)
self
.
G
.
node
[
self
.
vertex_num
-
1
][
'lft'
]
=
self
.
d_table
[
self
.
d_table
.
shape
[
0
]
-
1
,
1
]
#self.p_table[0, child], self.p_table.shape[0]
self
.
cal_lft
(
self
.
vertex_num
-
1
)
#The following two functions are to initialize the EST, EFT and LFT
#calculate the earliest start time and earliest finish time
def
cal_est
(
self
,
i
):
for
child
in
self
.
G
.
successors
(
i
):
est
=
self
.
G
.
node
[
i
][
'eft'
]
+
self
.
G
[
i
][
child
][
'weight'
]
if
est
>
self
.
G
.
node
[
child
][
'est'
]:
self
.
G
.
node
[
child
][
'est'
]
=
est
self
.
G
.
node
[
child
][
'eft'
]
=
est
+
self
.
p_table
[
0
,
child
]
self
.
cal_est
(
child
)
def
cal_lft
(
self
,
d
):
for
parent
in
self
.
G
.
predecessors
(
d
):
lft
=
self
.
G
.
node
[
d
][
'lft'
]
-
self
.
p_table
[
0
,
d
]
-
self
.
G
[
parent
][
d
][
'weight'
]
d_table_list
=
[]
for
deadline
in
self
.
d_table
:
d_table_list
.
append
(
deadline
[
0
,
0
])
if
parent
in
d_table_list
:
deadline
=
self
.
d_table
[
d_table_list
.
index
([
parent
]),
1
]
if
deadline
<
lft
:
lft
=
deadline
if
self
.
G
.
node
[
parent
][
'lft'
]
==
-
1
or
lft
<
self
.
G
.
node
[
parent
][
'lft'
]:
# parent may not finish later
self
.
G
.
node
[
parent
][
'lft'
]
=
lft
#print "call graphAssignLFT(",graph.node[parent]['name'],")"
self
.
cal_lft
(
parent
)
#Finding critical path
def
ic_pcp
(
self
):
self
.
assigned_list
[
0
]
=
0
self
.
assigned_list
[
self
.
vertex_num
-
1
]
=
0
self
.
assign_parents
(
self
.
vertex_num
-
1
)
def
has_unassigned_parent
(
self
,
i
):
for
parent
in
self
.
G
.
predecessors
(
i
):
if
(
self
.
assigned_list
[
parent
]
==
-
1
):
return
True
return
False
def
assign_parents
(
self
,
i
):
while
(
self
.
has_unassigned_parent
(
i
)):
if
self
.
successful
==
1
:
#resources cannot be met
break
pcp
=
[]
self
.
find_critical_path
(
i
,
pcp
)
assigned_vms
=
self
.
assign_path
(
pcp
)
if
-
1
in
assigned_vms
:
print
'resource cannot be met'
break
self
.
G
.
node
[
pcp
[
len
(
pcp
)
-
1
]][
'eft'
]
=
self
.
G
.
node
[
pcp
[
len
(
pcp
)
-
1
]][
'est'
]
+
self
.
p_table
[
assigned_vms
[
len
(
pcp
)
-
1
],
pcp
[
len
(
pcp
)
-
1
]]
self
.
update_est
(
pcp
[
len
(
pcp
)
-
1
],
pcp
,
assigned_vms
)
self
.
update_lft
(
pcp
[
0
],
pcp
,
assigned_vms
)
#split according to the types of assigned VMs and add it to the new instance
ni
=
NewInstance
(
assigned_vms
,
self
.
G
.
node
[
pcp
[
len
(
pcp
)
-
1
]][
'est'
],
self
.
G
.
node
[
pcp
[
0
]][
'eft'
],
pcp
)
for
j
in
xrange
(
len
(
pcp
)):
ni
.
cost
=
ni
.
cost
+
self
.
vm_price
[
assigned_vms
[
j
]]
self
.
instances
.
append
(
ni
)
for
j
in
reversed
(
pcp
):
#also in the paper they didn't mention the order
self
.
assign_parents
(
j
)
#TODO: A very tricky thing on updating the EST and EFT.
def
update_est
(
self
,
i
,
pcp
,
assigned_vms
):
for
child
in
self
.
G
.
successors
(
i
):
if
child
not
in
pcp
:
est
=
self
.
G
.
node
[
i
][
'eft'
]
+
self
.
G
[
i
][
child
][
'weight'
]
if
self
.
assigned_list
[
i
]
==
-
1
:
eft
=
est
+
self
.
p_table
[
0
,
child
]
else
:
eft
=
est
+
self
.
p_table
[
self
.
assigned_list
[
child
],
child
]
else
:
if
pcp
.
index
(
child
)
==
len
(
pcp
)
-
1
:
est
=
self
.
G
.
node
[
i
][
'eft'
]
eft
=
est
+
self
.
p_table
[
self
.
assigned_list
[
child
],
child
]
else
:
pos
=
pcp
.
index
(
child
)
est
=
self
.
G
.
node
[
i
][
'eft'
]
+
self
.
G
[
pcp
[
pos
+
1
]][
pcp
[
pos
]][
'weight'
]
eft
=
est
+
self
.
p_table
[
self
.
assigned_list
[
child
],
child
]
#decide whether the assignment will violate other parent data dependency
all_smaller
=
True
for
parent
in
self
.
G
.
predecessors
(
child
):
if
not
parent
==
i
:
if
self
.
G
.
node
[
parent
][
'eft'
]
+
self
.
G
[
parent
][
child
][
'weight'
]
>
est
:
all_smaller
=
False
if
all_smaller
:
self
.
G
.
node
[
child
][
'est'
]
=
est
self
.
G
.
node
[
child
][
'eft'
]
=
eft
self
.
update_est
(
child
,
pcp
,
assigned_vms
)
def
update_lft
(
self
,
d
,
pcp
,
assigned_vms
):
for
parent
in
self
.
G
.
predecessors
(
d
):
if
parent
not
in
pcp
:
if
self
.
assigned_list
[
d
]
==
-
1
:
lft
=
self
.
G
.
node
[
d
][
'lft'
]
-
self
.
p_table
[
0
,
d
]
-
self
.
G
[
parent
][
d
][
'weight'
]
else
:
lft
=
self
.
G
.
node
[
d
][
'lft'
]
-
self
.
p_table
[
self
.
assigned_list
[
d
],
d
]
-
self
.
G
[
parent
][
d
][
'weight'
]
else
:
pos
=
pcp
.
index
(
parent
)
#if pos < len(pcp) -1:
if
assigned_vms
[
pos
]
==
assigned_vms
[
pos
-
1
]:
#9, 6, 2
lft
=
self
.
G
.
node
[
d
][
'lft'
]
-
self
.
p_table
[
self
.
assigned_list
[
d
],
d
]
else
:
lft
=
self
.
G
.
node
[
d
][
'lft'
]
-
self
.
p_table
[
self
.
assigned_list
[
d
],
d
]
-
self
.
G
[
pcp
[
pos
]][
pcp
[
pos
-
1
]][
'weight'
]
if
lft
<
self
.
G
.
node
[
parent
][
'lft'
]:
self
.
G
.
node
[
parent
][
'lft'
]
=
lft
self
.
update_lft
(
parent
,
pcp
,
assigned_vms
)
def
find_critical_path
(
self
,
i
,
pcp
):
cal_cost
=
0
critical_parent
=
-
1
for
n
in
self
.
G
.
predecessors
(
i
):
if
self
.
assigned_list
[
n
]
==
-
1
:
#parent of node i is not assigned
if
self
.
G
.
node
[
n
][
'eft'
]
+
self
.
G
.
edge
[
n
][
i
][
'weight'
]
>
cal_cost
:
cal_cost
=
self
.
G
.
node
[
n
][
'eft'
]
+
self
.
G
.
edge
[
n
][
i
][
'weight'
]
critical_parent
=
n
if
not
critical_parent
==
-
1
:
pcp
.
append
(
critical_parent
)
self
.
find_critical_path
(
critical_parent
,
pcp
)
def
exec_time_sum
(
self
,
pcp
,
vm_type
):
sum
=
0
for
i
in
pcp
:
sum
+=
self
.
p_table
[
vm_type
,
i
]
return
sum
#look forward one step when assigning a vm to a pcp how the est varies
def
est_vary
(
self
,
pcp
,
d
):
head_pcp
=
pcp
[
len
(
pcp
)
-
1
]
original_est
=
self
.
G
.
node
[
head_pcp
][
'est'
]
biggest_est
=
-
1
biggest_parent
=
-
1
for
parent
in
self
.
G
.
predecessors
(
head_pcp
):
if
parent
==
d
:
est
=
self
.
G
.
node
[
parent
][
'eft'
]
else
:
est
=
self
.
G
.
node
[
parent
][
'eft'
]
+
self
.
G
[
parent
][
head_pcp
][
'weight'
]
if
biggest_est
<
est
:
biggest_est
=
est
biggest_parent
=
parent
return
original_est
-
biggest_est
#choose the best existing available instance for the pcp
def
choose_exist_instance
(
self
,
pcp
):
best_vm
=
None
best_exec_time
=
-
1
best_vary_time
=
-
1
for
vm
in
self
.
instances
:
head_pcp
=
pcp
[
len
(
pcp
)
-
1
]
for
parent
in
self
.
G
.
predecessors
(
head_pcp
):
head_exist_pcp
=
vm
.
task_list
[
0
]
#The last node of the previous critical path
if
parent
==
head_exist_pcp
:
if
best_vm
==
None
:
best_vm
=
vm
exec_time
=
self
.
exec_time_sum
(
pcp
,
vm
.
vm_type
)
best_exec_time
=
exec_time
best_vary_time
=
self
.
est_vary
(
pcp
,
head_exist_pcp
)
else
:
best_vm_head
=
vm
.
task_list
[
0
]
# if assigned to the vm, what will the est be
exec_time
=
self
.
exec_time_sum
(
pcp
,
vm
.
vm_type
)
# calculate the lft
varied_time
=
self
.
G
.
node
[
head_pcp
][
'est'
]
-
self
.
est_vary
(
pcp
,
head_exist_pcp
)
lft
=
varied_time
+
exec_time
if
(
exec_time
-
self
.
est_vary
(
pcp
,
head_exist_pcp
))
*
self
.
vm_price
[
vm
.
vm_type
]
>
\
(
best_exec_time
-
self
.
est_vary
(
pcp
,
best_vm
.
task_list
[
0
]))
*
self
.
vm_price
[
best_vm
.
vm_type
]
\
and
lft
<
self
.
G
.
node
[
head_pcp
][
'lft'
]:
#also should not violate the lft
best_vm
=
vm
best_exec_time
=
exec_time
best_vary_time
=
varied_time
if
not
best_vm
==
None
:
best_vm
.
vm_end
=
self
.
G
.
node
[
pcp
[
len
(
pcp
)
-
1
]][
'est'
]
-
best_vary_time
+
best_exec_time
return
best_vm
def
assign_path
(
self
,
pcp
):
cheapest_vm
=
-
1
cheapest_sum
=
9999999
#the initialized value should be a very large number
for
i
in
xrange
(
self
.
p_table
.
shape
[
0
]):
# use the the shape of the performance table to identify how many VM types are there
violate_LFT
=
0
start
=
self
.
G
.
node
[
pcp
[
len
(
pcp
)
-
1
]][
'est'
]
cost_sum
=
0
for
j
in
xrange
(
len
(
pcp
)
-
1
,
-
1
,
-
1
):
cost_sum
+=
self
.
vm_price
[
i
]
if
j
==
len
(
pcp
)
-
1
:
start
=
start
+
self
.
p_table
[
i
,
pcp
[
j
]]
else
:
start
=
start
+
self
.
p_table
[
i
,
pcp
[
j
]]
+
self
.
G
[
pcp
[
j
+
1
]][
pcp
[
j
]][
'weight'
]
if
self
.
G
.
node
[
pcp
[
j
]][
'lft'
]
<
start
:
violate_LFT
=
1
#launch a new instance of the cheapest service which can finish each task of P before its LFT
if
violate_LFT
==
0
and
cost_sum
<
cheapest_sum
:
cheapest_vm
=
i
cheapest_sum
=
cost_sum
for
i
in
xrange
(
len
(
pcp
)):
self
.
assigned_list
[
pcp
[
i
]]
=
cheapest_vm
return
[
cheapest_vm
]
*
len
(
pcp
)
def
generate_string
(
self
,
node
):
s
=
"name "
+
str
(
node
)
+
"
\n
"
for
i
in
xrange
(
len
(
self
.
vm_price
)):
s
=
s
+
str
(
self
.
p_table
[
i
,
node
])
+
"
\n
"
s
=
s
+
"assigned vm: "
+
str
(
self
.
assigned_list
[
node
]
+
1
)
return
s
def
generateJSON
(
self
):
content
=
{}
for
i
in
xrange
(
1
,
self
.
vertex_num
-
1
,
1
):
if
self
.
assigned_list
[
i
]
==
0
:
content
[
str
(
i
)]
=
'large'
if
self
.
assigned_list
[
i
]
==
1
:
content
[
str
(
i
)]
=
'Medium'
if
self
.
assigned_list
[
i
]
==
2
:
content
[
str
(
i
)]
=
'Small'
return
content
#calculate the total execution cost
def
cal_cost
(
self
):
cost
=
0
for
vm
in
self
.
instances
:
cost
=
cost
+
vm
.
cost
return
cost
def
cal_cost1
(
self
):
cost
=
0
for
i
in
range
(
1
,
len
(
self
.
assigned_list
)
-
1
):
cost
+=
self
.
vm_price
[
self
.
assigned_list
[
i
]]
return
cost
def
has_edge_vm
(
self
,
vm1
,
vm2
):
for
node1
in
vm1
.
task_list
:
for
node2
in
vm2
.
task_list
:
if
self
.
G
.
has_edge
(
node1
,
node2
)
or
self
.
G
.
has_edge
(
node2
,
node1
):
return
True
return
False
drip-simple_planner/NewInstance.py
deleted
100644 → 0
View file @
e56b5026
class
NewInstance
(
object
):
def
__init__
(
self
,
vm_type
,
vm_start
,
vm_end
,
pcp
):
self
.
vm_type
=
vm_type
self
.
vm_start
=
vm_start
self
.
vm_end
=
vm_end
self
.
task_list
=
pcp
self
.
cost
=
0
\ No newline at end of file
drip-simple_planner/rpc_server.py
deleted
100644 → 0
View file @
e56b5026
#!/usr/bin/env python
import
pika
import
networkx
as
nx
import
sys
import
numpy
as
np
import
sys
,
argparse
import
operator
import
os
from
toscaparser
import
*
from
toscaparser.tosca_template
import
ToscaTemplate
import
re
import
getopt
from
ICPCP
import
Workflow
import
random
import
time
import
json
connection
=
pika
.
BlockingConnection
(
pika
.
ConnectionParameters
(
host
=
'172.17.0.2'
))
channel
=
connection
.
channel
()
channel
.
queue_declare
(
queue
=
'planner_queue'
)
def
handleDelivery
(
message
):
parsed_json
=
json
.
loads
(
message
)
params
=
parsed_json
[
"parameters"
]
for
param
in
params
:
name
=
param
[
"name"
]
value
=
param
[
"value"
]
def
on_request
(
ch
,
method
,
props
,
body
):
handleDelivery
(
body
)
print
(
" Message
%
s"
%
body
)
response
=
"AAAAAAAAAAAAAAAAAAAAAA"
json1
=
response
.
get
(
'parameters'
)[
0
]
.
get
(
'value'
)
.
get
(
'topology_template'
)
.
get
(
'node_templates'
)
deadline
=
0
for
j
in
json1
:
#print json[j]
if
not
json1
[
j
][
'type'
]
==
"Switch.nodes.Application.Connection"
:
deadline
=
int
(
re
.
search
(
r'\d+'
,
json1
[
j
][
'properties'
][
'QoS'
][
'response_time'
])
.
group
())
#get the nodes from the json
nodeDic
=
{}
nodeDic1
=
{}
i
=
1
for
j
in
json1
:
if
not
json1
[
j
][
'type'
]
==
"Switch.nodes.Application.Connection"
:
print
j
,
json1
[
j
]
nodeDic
[
j
]
=
i
nodeDic1
[
i
]
=
j
i
=
i
+
1
#get the links from the json
links
=
[]
for
j
in
json1
:
if
json1
[
j
][
'type'
]
==
"Switch.nodes.Application.Connection"
:
print
json1
[
j
][
'properties'
][
'source'
][
'component_name'
]
print
json1
[
j
][
'properties'
][
'target'
][
'component_name'
]
link
=
{}
link
[
'source'
]
=
nodeDic
[
json1
[
j
][
'properties'
][
'source'
][
'component_name'
]]
link
[
'target'
]
=
nodeDic
[
json1
[
j
][
'properties'
][
'target'
][
'component_name'
]]
link
[
'weight'
]
=
random
.
randint
(
1
,
10
)
links
.
append
(
link
)
# compose the json as input of the workflow
wfJson
=
{}
wfJson
[
'workflow'
]
=
{}
nodesList
=
[]
sorted_nodeDic
=
sorted
(
nodeDic
.
items
(),
key
=
operator
.
itemgetter
(
1
))
for
key
,
value
in
sorted_nodeDic
:
v
=
{}
v
[
'name'
]
=
value
nodesList
.
append
(
v
)
wfJson
[
'workflow'
][
'nodes'
]
=
nodesList
wfJson
[
'workflow'
][
'links'
]
=
links
#print deadline
wfJson
[
'price'
]
=
"5,2,1"
wfJson
[
'deadline'
]
=
{
'2'
:
deadline
}
#generate performance
performance
=
{}
for
key
,
value
in
sorted_nodeDic
:
performance
[
str
(
value
)]
=
"1,2,3"
wfJson
[
'performance'
]
=
performance
print
wfJson
#send request to the server
start
=
time
.
time
()
wf
=
Workflow
()
wf
.
init
(
wfJson
)
wf
.
ic_pcp
()
#print content['workflow']
#return
res
=
wf
.
generateJSON
()
end
=
time
.
time
()
print
(
end
-
start
)
# generate the json files in the corresponding format as the
outcontent
=
{}
outcontent
[
"creationDate"
]
=
1487002029722
outcontent
[
"parameters"
]
=
[]
par1
=
{}
par1
[
"url"
]
=
"null"
par1
[
"encoding"
]
=
"UTF-8"
par1
[
"value"
]
=
res
par1
[
"attributes"
]
=
"null"
outcontent
[
"parameters"
]
.
append
(
par1
)
response
=
outcontent
ch
.
basic_publish
(
exchange
=
''
,
routing_key
=
props
.
reply_to
,
properties
=
pika
.
BasicProperties
(
correlation_id
=
\
props
.
correlation_id
),
body
=
str
(
response
))
ch
.
basic_ack
(
delivery_tag
=
method
.
delivery_tag
)
channel
.
basic_qos
(
prefetch_count
=
1
)
channel
.
basic_consume
(
on_request
,
queue
=
'planner_queue'
)
print
(
" [x] Awaiting RPC requests"
)
channel
.
start_consuming
()
\ No newline at end of file
drip-simple_planner/server.py
deleted
100644 → 0
View file @
e56b5026
#https://github.com/skoulouzis/DRIP/blob/package/doc/json_samples/kbExampleMessage.json
import
networkx
as
nx
import
sys
import
numpy
as
np
import
sys
,
argparse
import
operator
import
os
from
toscaparser
import
*
from
toscaparser.tosca_template
import
ToscaTemplate
import
re
import
getopt
from
ICPCP
import
Workflow
import
random
import
time
import
json
def
main
(
argv
):
workflow_file
=
""
try
:
opts
,
args
=
getopt
.
getopt
(
argv
,
"hw:s:"
,[
"workflow="
,
"SDI="
])
except
getopt
.
GetoptError
:
print
'server.py -w <workflowfile> -s <SDI>'
sys
.
exit
(
2
)
for
opt
,
arg
in
opts
:
if
opt
==
'-h'
:
print
'server.py -w <workflowfile> -s <SDI>'
sys
.
exit
()
elif
opt
in
(
"-w"
,
"--workflow"
):
workflow_file
=
arg
elif
opt
in
(
"-s"
,
"--SDI"
):
SDI_file
=
arg
data
=
{}
print
workflow_file
with
open
(
workflow_file
)
as
data_file
:
data
=
json
.
load
(
data_file
)
#print data
#path = "input.yaml"
'''
a_file = os.path.isfile(path)
tosca = ToscaTemplate(path)
#print tosca.tpl
json = tosca.tpl.get('topology_template').get('node_templates')
#print json
'''
json1
=
data
.
get
(
'parameters'
)[
0
]
.
get
(
'value'
)
.
get
(
'topology_template'
)
.
get
(
'node_templates'
)
deadline
=
0
for
j
in
json1
:
#print json[j]
if
not
json1
[
j
][
'type'
]
==
"Switch.nodes.Application.Connection"
:
deadline
=
int
(
re
.
search
(
r'\d+'
,
json1
[
j
][
'properties'
][
'QoS'
][
'response_time'
])
.
group
())
#get the nodes from the json
nodeDic
=
{}
nodeDic1
=
{}
i
=
1
for
j
in
json1
:
if
not
json1
[
j
][
'type'
]
==
"Switch.nodes.Application.Connection"
:
print
j
,
json1
[
j
]
nodeDic
[
j
]
=
i
nodeDic1
[
i
]
=
j
i
=
i
+
1
#get the links from the json
links
=
[]
for
j
in
json1
:
if
json1
[
j
][
'type'
]
==
"Switch.nodes.Application.Connection"
:
print
json1
[
j
][
'properties'
][
'source'
][
'component_name'
]
print
json1
[
j
][
'properties'
][
'target'
][
'component_name'
]
link
=
{}
link
[
'source'
]
=
nodeDic
[
json1
[
j
][
'properties'
][
'source'
][
'component_name'
]]
link
[
'target'
]
=
nodeDic
[
json1
[
j
][
'properties'
][
'target'
][
'component_name'
]]
link
[
'weight'
]
=
random
.
randint
(
1
,
10
)
links
.
append
(
link
)
# compose the json as input of the workflow
wfJson
=
{}
wfJson
[
'workflow'
]
=
{}
nodesList
=
[]
sorted_nodeDic
=
sorted
(
nodeDic
.
items
(),
key
=
operator
.
itemgetter
(
1
))
for
key
,
value
in
sorted_nodeDic
:
v
=
{}
v
[
'name'
]
=
value
nodesList
.
append
(
v
)
wfJson
[
'workflow'
][
'nodes'
]
=
nodesList
wfJson
[
'workflow'
][
'links'
]
=
links
#print deadline
wfJson
[
'price'
]
=
"5,2,1"
wfJson
[
'deadline'
]
=
{
'2'
:
deadline
}
#generate performance
performance
=
{}
for
key
,
value
in
sorted_nodeDic
:
performance
[
str
(
value
)]
=
"1,2,3"
wfJson
[
'performance'
]
=
performance
print
wfJson
#send request to the server
start
=
time
.
time
()
wf
=
Workflow
()
wf
.
init
(
wfJson
)
wf
.
ic_pcp
()
#print content['workflow']
#return
res
=
wf
.
generateJSON
()
end
=
time
.
time
()
print
(
end
-
start
)
# generate the json files in the corresponding format as the
outcontent
=
{}
outcontent
[
"creationDate"
]
=
1487002029722
outcontent
[
"parameters"
]
=
[]
par1
=
{}
par1
[
"url"
]
=
"null"
par1
[
"encoding"
]
=
"UTF-8"
par1
[
"value"
]
=
res
par1
[
"attributes"
]
=
"null"
outcontent
[
"parameters"
]
.
append
(
par1
)
return
outcontent
if
__name__
==
'__main__'
:
main
(
sys
.
argv
[
1
:])
\ No newline at end of file
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment