Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
S
SMART
Project
Project
Details
Activity
Releases
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
3
Issues
3
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Registry
Registry
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
UNI-KLU
SMART
Commits
b19dc287
Commit
b19dc287
authored
Sep 23, 2019
by
Alexander Lercher
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Call hypergraph impl
parent
f18e7ea3
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
17 additions
and
20 deletions
+17
-20
SemanticLinking.py
...c-linking-microservice/app/initialdemo/SemanticLinking.py
+17
-20
No files found.
data-hub/semantic-linking-microservice/app/initialdemo/SemanticLinking.py
View file @
b19dc287
import
networkx
as
nx
import
networkx
as
nx
import
matplotlib.pyplot
as
plt
import
matplotlib.pyplot
as
plt
from
collections
import
Counter
from
collections
import
Counter
import
HyperGraph
as
hg
from
HyperGraph
import
HyperGraph
import
warnings
import
warnings
# pip install networkx
# pip install networkx
...
@@ -13,9 +13,18 @@ import warnings
...
@@ -13,9 +13,18 @@ import warnings
class
SemanticLinking
:
class
SemanticLinking
:
def
__init__
(
self
):
hg
:
HyperGraph
=
None
hg
.
classify
()
df_nodes
=
[]
destf_nodes
=
[]
def
__init__
(
self
):
warnings
.
filterwarnings
(
'ignore'
)
self
.
hg
=
HyperGraph
()
self
.
hg
.
classify
()
self
.
df_nodes
=
self
.
hg
.
cluster_labels
self
.
destf_nodes
=
self
.
hg
.
dest_cluster_labels
def
_color_network
(
self
,
G
):
def
_color_network
(
self
,
G
):
"""Colors the network so that neighboring nodes all have distinct colors.
"""Colors the network so that neighboring nodes all have distinct colors.
...
@@ -30,7 +39,6 @@ class SemanticLinking:
...
@@ -30,7 +39,6 @@ class SemanticLinking:
coloring
[
color
]
=
set
([
node
])
coloring
[
color
]
=
set
([
node
])
return
coloring
return
coloring
def
_labeling_complete
(
self
,
labeling
,
G
):
def
_labeling_complete
(
self
,
labeling
,
G
):
"""Determines whether or not LPA is done.
"""Determines whether or not LPA is done.
...
@@ -42,7 +50,6 @@ class SemanticLinking:
...
@@ -42,7 +50,6 @@ class SemanticLinking:
return
all
(
labeling
[
v
]
in
self
.
_most_frequent_labels
(
v
,
labeling
,
G
)
return
all
(
labeling
[
v
]
in
self
.
_most_frequent_labels
(
v
,
labeling
,
G
)
for
v
in
G
if
len
(
G
[
v
])
>
0
)
for
v
in
G
if
len
(
G
[
v
])
>
0
)
def
_most_frequent_labels
(
self
,
node
,
labeling
,
G
):
def
_most_frequent_labels
(
self
,
node
,
labeling
,
G
):
"""Returns a set of all labels with maximum frequency in `labeling`.
"""Returns a set of all labels with maximum frequency in `labeling`.
...
@@ -58,7 +65,6 @@ class SemanticLinking:
...
@@ -58,7 +65,6 @@ class SemanticLinking:
max_freq
=
max
(
freqs
.
values
())
max_freq
=
max
(
freqs
.
values
())
return
{
label
for
label
,
freq
in
freqs
.
items
()
if
freq
==
max_freq
}
return
{
label
for
label
,
freq
in
freqs
.
items
()
if
freq
==
max_freq
}
def
_update_label
(
self
,
node
,
labeling
,
G
):
def
_update_label
(
self
,
node
,
labeling
,
G
):
"""Updates the label of a node using the Prec-Max tie breaking algorithm
"""Updates the label of a node using the Prec-Max tie breaking algorithm
...
@@ -75,16 +81,8 @@ class SemanticLinking:
...
@@ -75,16 +81,8 @@ class SemanticLinking:
labeling
[
node
]
=
max
(
high_labels
)
labeling
[
node
]
=
max
(
high_labels
)
warnings
.
filterwarnings
(
'ignore'
)
#G = nx.DiGraph(directed=True)
G
=
nx
.
MultiDiGraph
(
day
=
"Stackoverflow"
)
G
=
nx
.
MultiDiGraph
(
day
=
"Stackoverflow"
)
df_nodes
=
hg
.
clusterlabels
destf_nodes
=
hg
.
destclusterlabel
color_map
=
{
1
:
'#f09494'
,
2
:
'#eebcbc'
,
3
:
'#72bbd0'
,
4
:
'#91f0a1'
,
5
:
'#629fff'
,
6
:
'#bcc2f2'
,
color_map
=
{
1
:
'#f09494'
,
2
:
'#eebcbc'
,
3
:
'#72bbd0'
,
4
:
'#91f0a1'
,
5
:
'#629fff'
,
6
:
'#bcc2f2'
,
7
:
'#eebcbc'
,
8
:
'#f1f0c0'
,
9
:
'#d2ffe7'
,
10
:
'#caf3a6'
,
11
:
'#ffdf55'
,
12
:
'#ef77aa'
,
7
:
'#eebcbc'
,
8
:
'#f1f0c0'
,
9
:
'#d2ffe7'
,
10
:
'#caf3a6'
,
11
:
'#ffdf55'
,
12
:
'#ef77aa'
,
13
:
'#d6dcff'
,
14
:
'#d2f5f0'
}
13
:
'#d6dcff'
,
14
:
'#d2f5f0'
}
...
@@ -102,24 +100,23 @@ class SemanticLinking:
...
@@ -102,24 +100,23 @@ class SemanticLinking:
labeling
=
{}
labeling
=
{}
def
drawedges
(
self
):
def
drawedges
(
self
):
"""drawing edges in graph"""
"""drawing edges in graph"""
labelvalues
=
self
.
hg
.
label_values
for
drow
in
range
(
len
(
self
.
df_nodes
)):
for
drow
in
range
(
len
(
self
.
df_nodes
)):
for
row
in
range
(
len
(
self
.
destf_nodes
[
drow
])):
for
row
in
range
(
len
(
self
.
destf_nodes
[
drow
])):
self
.
G
.
add_edge
(
self
.
df_nodes
[
drow
],
self
.
destf_nodes
[
drow
][
row
])
self
.
G
.
add_edge
(
self
.
df_nodes
[
drow
],
self
.
destf_nodes
[
drow
][
row
])
for
row
in
range
(
len
(
hg
.
labalv
lues
)):
for
row
in
range
(
len
(
labelva
lues
)):
for
row1
in
range
(
len
(
hg
.
labalv
lues
)):
for
row1
in
range
(
len
(
labelva
lues
)):
self
.
weight1
.
append
(
self
.
G
.
number_of_edges
(
hg
.
labalvlues
[
row
],
hg
.
labalv
lues
[
row1
]))
self
.
weight1
.
append
(
self
.
G
.
number_of_edges
(
labelvalues
[
row
],
labelva
lues
[
row1
]))
print
(
"The number of coccurance from node "
,
hg
.
labalvlues
[
row
],
"to node "
,
hg
.
labalv
lues
[
row1
],
": "
,
self
.
weight1
[
row1
])
print
(
"The number of coccurance from node "
,
labelvalues
[
row
],
"to node "
,
labelva
lues
[
row1
],
": "
,
self
.
weight1
[
row1
])
self
.
G
.
__setattr__
(
'weight'
,
self
.
weight1
)
self
.
G
.
__setattr__
(
'weight'
,
self
.
weight1
)
def
dolabeling
(
self
):
def
dolabeling
(
self
):
"""label_propagation_communities(G) """
"""label_propagation_communities(G) """
coloring
=
self
.
_color_network
(
self
.
G
)
coloring
=
self
.
_color_network
(
self
.
G
)
# Create a unique label for each node in the graph
# Create a unique label for each node in the graph
labeling
=
{
v
:
k
for
k
,
v
in
enumerate
(
self
.
G
)}
labeling
=
{
v
:
k
for
k
,
v
in
enumerate
(
self
.
G
)}
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment