Commit aade29cb authored by Alexander Lercher's avatar Alexander Lercher

Merge branch 'misc/documentation-rolestage' into 'develop'

Refactored Rolestage Endpoints and documentation

See merge request !22
parents 20247ffe 5753106a
...@@ -31,7 +31,7 @@ This token is used for authentication as _regular user_ on all microservices cur ...@@ -31,7 +31,7 @@ This token is used for authentication as _regular user_ on all microservices cur
adds a blockchain transaction entry for ApplicationType with all the keys and values. These will be converted and stored in our own format for creating multilayers and communities. adds a blockchain transaction entry for ApplicationType with all the keys and values. These will be converted and stored in our own format for creating multilayers and communities.
# Business Logic Microservice # Business Logic Microservice
https://articonf1.itec.aau.at:30420/api/ui https://articonf1.itec.aau.at:30420/api/ui/
This microservice contains use-case specific informations, like schemas and contexts. This microservice contains use-case specific informations, like schemas and contexts.
...@@ -41,16 +41,54 @@ This microservice contains use-case specific informations, like schemas and cont ...@@ -41,16 +41,54 @@ This microservice contains use-case specific informations, like schemas and cont
## Context information ## Context information
```GET https://articonf1.itec.aau.at:30420/api/use-cases/{use-case}/layers``` returns all layers from the schema used for clustering interally. ```GET https://articonf1.itec.aau.at:30420/api/use-cases/{use-case}/layers``` returns all layers from the schema used for clustering interally.
# Trace Retrieval Microservice
https://articonf1.itec.aau.at:30001/api/ui/
This microservice contains the nodes from the transactions preprocessed as defined in *Schema Information*.
```GET https://articonf1.itec.aau.at:30001/api/use_cases/{use_case}/transactions``` returns all flattened transactions, before splitting them into layers.
# Semantic Linking Microservice # Semantic Linking Microservice
https://articonf1.itec.aau.at:30101/api/ui/ https://articonf1.itec.aau.at:30101/api/ui/
This microservice contains the nodes from the transactions preprocessed as defined in *Schema Information*. Additionally it splits the raw input into multipe layers. This microservice splits the preprocessed transactions into multipe layers, calling the splitted transaction per layer nodes.
```GET https://articonf1.itec.aau.at:30101/api/use-cases/{use-case}/nodes``` returns all preprocessed transactions, called nodes, before splitting them into layers. ```GET https://articonf1.itec.aau.at:30101/api/use-cases/{use_case}/tables/{table_name}/layers/{layer_name}/nodes ``` returns all splitted transactions, called nodes, for the layer layer_name.
# Role Stage Discovery Microservice # Role Stage Discovery Microservice
https://articonf1.itec.aau.at:30103/api/ui https://articonf1.itec.aau.at:30103/api/ui/
This microservice contains the communities based on clusters and similarities between communities. It additionally contains time slices with subsets of clusters, which's transaction happened in the corresponding time window.
Schemas and Input data are supplied by the [Business Logic microservice](https://articonf1.itec.aau.at:30420/api/ui), [Semantic Linking microservice](https://articonf1.itec.aau.at:30101/api/ui/) and [Trace Retrieval microservice](https://articonf1.itec.aau.at:30101/api/ui/).
## Layers
Contains information about the schema copied from the Business Logic microservice.
Returns the Schemas and/or Input data used for calculating the clustering which is further used for calculating the similarity.
```GET https://articonf1.itec.aau.at:30103/api/use-cases/{use_case}/layers``` returns layer infos for the given use-case.
```GET https://articonf1.itec.aau.at:30103/api/use-cases/{use_case}/tables/{table}/layers/{layer_name}``` returns the layer information for only the one layer.
```GET https://articonf1.itec.aau.at:30103/api/use-cases/{use_case}/tables/{table}/layers/{layer_name}/nodes``` contains all the nodes contained in the layer fetched from the Semantic Linking microservice.
## Clusters
Contains the clustering results. Clustering is performed on all nodes inside one layer. Furthermore the clusters are partitioned based on timestamps.
```GET https://articonf1.itec.aau.at:30103/api/use-cases/{use_case}/tables/{table}/layers/{layer_name}/clusters``` returns the identified clusters.
```GET https://articonf1.itec.aau.at:30103/api/use-cases/{use_case}/tables/{table}/layers/{layer_name}/timeslices``` returns the identified clusters partitioned based on their nodes' timestamps.
## RunId
When a similarity computation is executed, it has an associated RunId which is used to uniquely identify that execution.
```GET https://articonf1.itec.aau.at:30103/api/runIds``` returns all RunIds in the db.
## Similarity
Returns the computed similarity. Two clusters belonging to the SAME layer will be given a similarity value by comparing them to another cluster belonging to a DIFFERENT layer. This is done for every cluster in the input data. This querry returns all the calculated similarity values, given the criteria (i.e belonging to a use-case,table etc).
```GET https://articonf1.itec.aau.at:30103/api/use_cases/{use_case}/tables/{table}/clusterSimilarity``` returns all similarity values for the given use-case and table.
This microservice contains the communities based on clusters and similarities between communities. It additionally contains time slices with subsets of clusters, which's transaction happened in the corresponding time. ## Connected Cluster
Intermediary data-structure used only by the function which computes the similarity. Clusters are connected only to other clusters belonging to a DIFFERENT layer.
The endpoints are currently refactored, so please check the Swagger UI autogenerated documentation on its website. ```GET https://articonf1.itec.aau.at:30103/api/use_cases/{use_case}/tables{table}/connectedClusters``` returns all connected clusters for the given use-case and table.
\ No newline at end of file
...@@ -130,7 +130,49 @@ class Repository(MongoRepositoryBase): ...@@ -130,7 +130,49 @@ class Repository(MongoRepositoryBase):
if (run_id == None): if (run_id == None):
entries = super().get_entries(self._connected_clusters_collection, projection={'_id': 0}) entries = super().get_entries(self._connected_clusters_collection, projection={'_id': 0})
else: else:
entries = super().get_entries(self._similarity_collection, selection={'cluster_runId' : run_id}, projection={'_id': 0}) entries = super().get_entries(self._connected_clusters_collection, selection={'cluster_runId' : run_id}, projection={'_id': 0})
output = []
for ent in entries:
output.append(ent)
return output
# print(ent)
#return [Cluster(cluster_dict=e, from_db=True) for e in entries]
def get_connected_clusters_for_use_case(self,use_case, run_id: str=None):#, layer_name: str):
''' Get Connected Clusters Data given the Use-Case from DB '''
if (run_id == None):
entries = super().get_entries(self._connected_clusters_collection, selection={'cluster_use_case': use_case}, projection={'_id': 0})
else:
entries = super().get_entries(self._connected_clusters_collection, selection={'cluster_runId' : run_id, 'cluster_use_case': use_case}, projection={'_id': 0})
output = []
for ent in entries:
output.append(ent)
return output
# print(ent)
#return [Cluster(cluster_dict=e, from_db=True) for e in entries]
def get_connected_clusters_for_table(self,use_case,table, run_id: str=None):#, layer_name: str):
''' Get Connected Clusters Data given the Use-Case and Table from DB '''
if (run_id == None):
entries = super().get_entries(self._connected_clusters_collection, selection={'cluster_use_case': use_case,'cluster_table': table}, projection={'_id': 0})
else:
entries = super().get_entries(self._connected_clusters_collection, selection={'cluster_runId' : run_id,'cluster_use_case': use_case,'cluster_table': table}, projection={'_id': 0})
output = []
for ent in entries:
output.append(ent)
return output
# print(ent)
#return [Cluster(cluster_dict=e, from_db=True) for e in entries]
def get_connected_clusters_by_name(self,use_case, table, layer_name, run_id: str=None):#, layer_name: str):
''' Get Connected Clusters Data from DB '''
if (run_id == None):
entries = super().get_entries(self._connected_clusters_collection, selection={'cluster_use_case': use_case,'cluster_table': table, 'cluster_layer' : layer_name}, projection={'_id': 0})
else:
entries = super().get_entries(self._connected_clusters_collection, selection={'cluster_runId' : run_id,'cluster_use_case': use_case,'cluster_table': table, 'cluster_layer' : layer_name}, projection={'_id': 0})
output = [] output = []
for ent in entries: for ent in entries:
...@@ -175,8 +217,38 @@ class Repository(MongoRepositoryBase): ...@@ -175,8 +217,38 @@ class Repository(MongoRepositoryBase):
output.append(e) output.append(e)
return output return output
""" """
def get_similarity_use_case(self,skipNr,batchSize,use_case, run_id: str=None):
''' Get Similarity Data from DB '''
if (run_id == None):
entries = super().get_entries(self._similarity_collection, selection={'use_case' : use_case}, projection={'_id': 0})
else:
entries = super().get_entries(self._similarity_collection, selection={'use_case' : use_case, 'runId' : run_id}, projection={'_id': 0})
#
return list(entries.sort([('_id', -1)]).skip(skipNr).limit(batchSize))
def get_similarity_table(self,skipNr,batchSize,use_case,table, run_id: str=None):
''' Get Similarity Data from DB '''
if (run_id == None):
entries = super().get_entries(self._similarity_collection, selection={'use_case' : use_case, 'table': table}, projection={'_id': 0})
else:
entries = super().get_entries(self._similarity_collection, selection={'use_case' : use_case, 'table': table, 'runId' : run_id}, projection={'_id': 0})
#
return list(entries.sort([('_id', -1)]).skip(skipNr).limit(batchSize))
def get_similarity_layer(self,skipNr,batchSize,use_case,table,layer, run_id: str=None):
''' Get Similarity Data from DB '''
if (run_id == None):
entries = super().get_entries(self._similarity_collection, selection={'use_case' : use_case, 'table': table, 'cluster_layer' : layer}, projection={'_id': 0})
else:
entries = super().get_entries(self._similarity_collection, selection={'use_case' : use_case, 'table': table, 'cluster_layer' : layer, 'runId' : run_id}, projection={'_id': 0})
#
return list(entries.sort([('_id', -1)]).skip(skipNr).limit(batchSize))
#endregion #endregion
#region connected_run #region connected_run
......
...@@ -67,7 +67,7 @@ def loadJson(url:str) : ...@@ -67,7 +67,7 @@ def loadJson(url:str) :
return jsonData return jsonData
def getClusterDataFromMongo(layerNameList,limitNrCluster,limitNrNodes): def getClusterDataFromMongo(layerNameList,limitNrCluster,limitNrNodes,use_case,table):
''' Calculates the nr of connections/weights between the clusters contained in the "inputLayerDict". Connections are made between clusters from DIFFERENT layers. ''' Calculates the nr of connections/weights between the clusters contained in the "inputLayerDict". Connections are made between clusters from DIFFERENT layers.
:param List[string] layerNameList: Name of the layers to pull from the DB :param List[string] layerNameList: Name of the layers to pull from the DB
...@@ -93,7 +93,7 @@ def getClusterDataFromMongo(layerNameList,limitNrCluster,limitNrNodes): ...@@ -93,7 +93,7 @@ def getClusterDataFromMongo(layerNameList,limitNrCluster,limitNrNodes):
#imports and translates the data from JSON into usefull format #imports and translates the data from JSON into usefull format
#returns layerdiction -> Layer -> clusterDict -> Cluster -> nodesDict -> Nodes #returns layerdiction -> Layer -> clusterDict -> Cluster -> nodesDict -> Nodes
for name in layerNameList: for name in layerNameList:
newData = get_mongoDB_cluster_by_layerName(name)#repo.get_clusters_for_layer(name) newData = get_mongoDB_cluster_by_layerName(use_case,table,name)#repo.get_clusters_for_layer(name)
if newData is not None and len(newData) != 0: if newData is not None and len(newData) != 0:
layerDict = populateWithNewNodesSingleLayer(newData[0:limitNrCluster],layerDict,limitNrNodes) layerDict = populateWithNewNodesSingleLayer(newData[0:limitNrCluster],layerDict,limitNrNodes)
...@@ -290,7 +290,7 @@ def makeChangeNodesDict(inputList,cluster_label,cluster_layer): ...@@ -290,7 +290,7 @@ def makeChangeNodesDict(inputList,cluster_label,cluster_layer):
outputDict[key]= newNode outputDict[key]= newNode
return outputDict return outputDict
def get_mongoDB_cluster_by_layerName(name): def get_mongoDB_cluster_by_layerName(use_case, table , layer_name):
res = repo.get_clusters_for_layer(name) res = repo.get_clusters_for_layer(use_case, table, layer_name)
return [c.to_serializable_dict() for c in res] return [c.to_serializable_dict() for c in res]
...@@ -6,7 +6,7 @@ from processing.similarityFiles.miscFunctions import * ...@@ -6,7 +6,7 @@ from processing.similarityFiles.miscFunctions import *
from db.repository import Repository from db.repository import Repository
repo = Repository() repo = Repository()
def outputFileLayerFunction(layerDict,limitNrNodes,limitNrCluster,runId): def outputFileLayerFunction(layerDict,limitNrNodes,limitNrCluster,runId,table,use_case):
''' Writes the layerDict data to a JSON file. ''' Writes the layerDict data to a JSON file.
:param Dict{string: Layer} layerDict: Object which contains Data about the Layers, Clusters and Nodes :param Dict{string: Layer} layerDict: Object which contains Data about the Layers, Clusters and Nodes
...@@ -17,7 +17,7 @@ def outputFileLayerFunction(layerDict,limitNrNodes,limitNrCluster,runId): ...@@ -17,7 +17,7 @@ def outputFileLayerFunction(layerDict,limitNrNodes,limitNrCluster,runId):
''' '''
layerJSON = convertLayerDictToJSON(layerDict,runId) layerJSON = convertLayerDictToJSON(layerDict,runId,table,use_case)
outputJSON = json.dumps(layerJSON, default=lambda o: o.__dict__, indent=4) outputJSON = json.dumps(layerJSON, default=lambda o: o.__dict__, indent=4)
try: try:
...@@ -28,7 +28,7 @@ def outputFileLayerFunction(layerDict,limitNrNodes,limitNrCluster,runId): ...@@ -28,7 +28,7 @@ def outputFileLayerFunction(layerDict,limitNrNodes,limitNrCluster,runId):
def outputFileSimilFunction(similarityDict,limitNrNodes,limitNrCluster,runId): def outputFileSimilFunction(similarityDict,limitNrNodes,limitNrCluster,runId,table,use_case):
''' Writes the similarityDict data to a JSON file. ''' Writes the similarityDict data to a JSON file.
...@@ -40,7 +40,7 @@ def outputFileSimilFunction(similarityDict,limitNrNodes,limitNrCluster,runId): ...@@ -40,7 +40,7 @@ def outputFileSimilFunction(similarityDict,limitNrNodes,limitNrCluster,runId):
''' '''
similJSON = convertSimilarityDictToJSON(similarityDict,runId) similJSON = convertSimilarityDictToJSON(similarityDict,runId,table,use_case)
outputJSON = json.dumps(similJSON, default=lambda o: o.__dict__, indent=4) outputJSON = json.dumps(similJSON, default=lambda o: o.__dict__, indent=4)
try: try:
...@@ -77,7 +77,7 @@ def outputFileTimeFunction(timelist,limitNrNodes,limitNrCluster,runId): ...@@ -77,7 +77,7 @@ def outputFileTimeFunction(timelist,limitNrNodes,limitNrCluster,runId):
print("Error occured when writing the resultTimeExec file") print("Error occured when writing the resultTimeExec file")
def outputMongoConnClustDict(inputDict,runId): def outputMongoConnClustDict(inputDict,runId,table,use_case):
''' Stores connected_clusters in the database. ''' Stores connected_clusters in the database.
...@@ -89,9 +89,9 @@ def outputMongoConnClustDict(inputDict,runId): ...@@ -89,9 +89,9 @@ def outputMongoConnClustDict(inputDict,runId):
#inputDict["Timestamp"] = str(datetime.datetime.now()) #inputDict["Timestamp"] = str(datetime.datetime.now())
add_conn_clusters(inputDict,runId) add_conn_clusters(inputDict,runId,table,use_case)
def outputMongoSimilarity(inputDict,runId): def outputMongoSimilarity(inputDict,runId,table,use_case):
''' Stores cluster_similarity in the database. ''' Stores cluster_similarity in the database.
:param Dict() inputDict: Contains the data to insert :param Dict() inputDict: Contains the data to insert
...@@ -99,7 +99,7 @@ def outputMongoSimilarity(inputDict,runId): ...@@ -99,7 +99,7 @@ def outputMongoSimilarity(inputDict,runId):
:param string runId: Id of the Run :param string runId: Id of the Run
''' '''
add_similarity(inputDict,runId) add_similarity(inputDict,runId,table,use_case)
def add_connected_run(): def add_connected_run():
...@@ -116,7 +116,7 @@ def add_connected_run(): ...@@ -116,7 +116,7 @@ def add_connected_run():
inserted_result = repo.add_connected_run(runDict) inserted_result = repo.add_connected_run(runDict)
return str(inserted_result.inserted_id) return str(inserted_result.inserted_id)
def add_conn_clusters(inputDict,runId): def add_conn_clusters(inputDict,runId,table,use_case):
''' Stores connected_clusters in the database. ''' Stores connected_clusters in the database.
:param Dict() inputDict: Contains the data to insert :param Dict() inputDict: Contains the data to insert
...@@ -125,11 +125,11 @@ def add_conn_clusters(inputDict,runId): ...@@ -125,11 +125,11 @@ def add_conn_clusters(inputDict,runId):
''' '''
outputJSON = convertLayerDictToJSON(inputDict,runId) outputJSON = convertLayerDictToJSON(inputDict,runId,table,use_case)
for element in outputJSON: for element in outputJSON:
repo.add_connected_cluster(element) repo.add_connected_cluster(element)
def add_similarity(inputDict,runId): def add_similarity(inputDict,runId,table,use_case):
''' Stores cluster_similarity in the database. ''' Stores cluster_similarity in the database.
:param Dict() inputDict: Contains the data to insert :param Dict() inputDict: Contains the data to insert
...@@ -138,6 +138,6 @@ def add_similarity(inputDict,runId): ...@@ -138,6 +138,6 @@ def add_similarity(inputDict,runId):
''' '''
outputJSON = convertSimilarityDictToJSON(inputDict,runId) outputJSON = convertSimilarityDictToJSON(inputDict,runId,table,use_case)
for element in outputJSON: for element in outputJSON:
repo.add_single_similarity(element) repo.add_single_similarity(element)
\ No newline at end of file
...@@ -42,7 +42,7 @@ def totalNumberOfClusters(inputLayerDict): ...@@ -42,7 +42,7 @@ def totalNumberOfClusters(inputLayerDict):
return clustCount return clustCount
def convertLayerDictToJSON(layerDict, runId): def convertLayerDictToJSON(layerDict, runId,table,use_case):
''' Converts a Layer object to JSON format. ''' Converts a Layer object to JSON format.
:param Dict{string: Layer} layerDict: Object which contains Data about the Layers, Clusters and Nodes :param Dict{string: Layer} layerDict: Object which contains Data about the Layers, Clusters and Nodes
...@@ -57,6 +57,8 @@ def convertLayerDictToJSON(layerDict, runId): ...@@ -57,6 +57,8 @@ def convertLayerDictToJSON(layerDict, runId):
outputJSON.append({ outputJSON.append({
"cluster_label" : curCluster.cluster_label, "cluster_label" : curCluster.cluster_label,
"cluster_layer" : curCluster.cluster_layer, "cluster_layer" : curCluster.cluster_layer,
"cluster_table" : table,
"cluster_use_case": use_case,
"cluster_runId" : runId, "cluster_runId" : runId,
"cluster_connClustDict" : changeTupleDictToDictList(curCluster.cluster_connClustDict), "cluster_connClustDict" : changeTupleDictToDictList(curCluster.cluster_connClustDict),
"cluster_connNodesDict" : getFrozensetFromConnNodesDict(curCluster.cluster_connNodesDict), #Don "cluster_connNodesDict" : getFrozensetFromConnNodesDict(curCluster.cluster_connNodesDict), #Don
...@@ -109,7 +111,7 @@ def getFrozensetFromConnNodesDict(inputDict): ...@@ -109,7 +111,7 @@ def getFrozensetFromConnNodesDict(inputDict):
return output return output
def convertSimilarityDictToJSON(inputDict,runId): def convertSimilarityDictToJSON(inputDict,runId,table,use_case):
''' Converts a Similarity Dictionary to JSON format. For outputting to DB ''' Converts a Similarity Dictionary to JSON format. For outputting to DB
:param Dict{} similarityDict: Object which contains Data about the Computed similarities between Clusters :param Dict{} similarityDict: Object which contains Data about the Computed similarities between Clusters
...@@ -125,6 +127,8 @@ def convertSimilarityDictToJSON(inputDict,runId): ...@@ -125,6 +127,8 @@ def convertSimilarityDictToJSON(inputDict,runId):
auxDict["cluster_layer"] = tupleKey[2] auxDict["cluster_layer"] = tupleKey[2]
auxDict["similarityValues"] = inputDict[tupleKey] auxDict["similarityValues"] = inputDict[tupleKey]
auxDict["runId"] = runId auxDict["runId"] = runId
auxDict["table"] = table
auxDict["use_case"] = use_case
similList.append(auxDict) similList.append(auxDict)
similToJSON = similList similToJSON = similList
#outputJSON = json.dumps(similToJSON, default=lambda o: o.__dict__, indent=4) #outputJSON = json.dumps(similToJSON, default=lambda o: o.__dict__, indent=4)
......
...@@ -39,7 +39,7 @@ from processing.similarityFiles.dataOutput import * ...@@ -39,7 +39,7 @@ from processing.similarityFiles.dataOutput import *
outputToFileFLAG = True outputToFileFLAG = True
def main(layerNameList:List[str] = ["Price_Layer","FinishedTime_Layer","Destination_Layer"]): def main(layerNameList:List[str] , table:str , use_case: str):
''' '''
Executes the similarity calculation by calculating weights between clusters in different layers. Executes the similarity calculation by calculating weights between clusters in different layers.
Then calculating the Euclidean distance between nodes in the same layer based on one other layer each. Then calculating the Euclidean distance between nodes in the same layer based on one other layer each.
...@@ -48,7 +48,8 @@ def main(layerNameList:List[str] = ["Price_Layer","FinishedTime_Layer","Destinat ...@@ -48,7 +48,8 @@ def main(layerNameList:List[str] = ["Price_Layer","FinishedTime_Layer","Destinat
:param layerNameList: The list of layer names as strings :param layerNameList: The list of layer names as strings
''' '''
print("Entered Similarity Main") print("Entered Similarity Main")
if len(layerNameList)==0:
return
timelist = [] timelist = []
timelist.append(currentTime())#starting time timelist.append(currentTime())#starting time
...@@ -67,7 +68,7 @@ def main(layerNameList:List[str] = ["Price_Layer","FinishedTime_Layer","Destinat ...@@ -67,7 +68,7 @@ def main(layerNameList:List[str] = ["Price_Layer","FinishedTime_Layer","Destinat
limitNrNodes = -1 #per Layer limitNrNodes = -1 #per Layer
layerDict = getClusterDataFromMongo(layerNameList,limitNrCluster,limitNrNodes) layerDict = getClusterDataFromMongo(layerNameList,limitNrCluster,limitNrNodes,use_case,table)
if layerDict is None or len(layerDict) == 0: if layerDict is None or len(layerDict) == 0:
LOGGER.error(f"No data for any of the following layers existed: {str(layerNameList)}. Similarity calculation was not performed.") LOGGER.error(f"No data for any of the following layers existed: {str(layerNameList)}. Similarity calculation was not performed.")
return return
...@@ -98,13 +99,13 @@ def main(layerNameList:List[str] = ["Price_Layer","FinishedTime_Layer","Destinat ...@@ -98,13 +99,13 @@ def main(layerNameList:List[str] = ["Price_Layer","FinishedTime_Layer","Destinat
if (outputToFileFLAG == True): if (outputToFileFLAG == True):
print("Outputing data") print("Outputing data")
outputFileLayerFunction(layerDict,totalNodes,totalClusters,runId) outputFileLayerFunction(layerDict,totalNodes,totalClusters,runId,table,use_case)
outputFileSimilFunction(similarityDict,totalNodes,totalClusters,runId) outputFileSimilFunction(similarityDict,totalNodes,totalClusters,runId,table,use_case)
outputFileTimeFunction(timelist,totalNodes,totalClusters,runId) outputFileTimeFunction(timelist,totalNodes,totalClusters,runId)
#Output to DB #Output to DB
outputMongoConnClustDict(layerDict,runId) outputMongoConnClustDict(layerDict,runId,table,use_case)
outputMongoSimilarity(similarityDict,runId) outputMongoSimilarity(similarityDict,runId,table,use_case)
#Currently not used in the calculation of connections/similarity, developed for possible future uses #Currently not used in the calculation of connections/similarity, developed for possible future uses
...@@ -122,6 +123,6 @@ def main(layerNameList:List[str] = ["Price_Layer","FinishedTime_Layer","Destinat ...@@ -122,6 +123,6 @@ def main(layerNameList:List[str] = ["Price_Layer","FinishedTime_Layer","Destinat
return return
##########START########## ##########START##########
if __name__ is '__main__': #if __name__ is '__main__':
main() #main()
#########FINISH########## #########FINISH##########
...@@ -4,8 +4,8 @@ from db.entities import ClusterSet ...@@ -4,8 +4,8 @@ from db.entities import ClusterSet
repo = Repository() repo = Repository()
def get_by_name(use_case, use_case_table, name): def get_by_name(use_case, table, layer_name):
res = repo.get_clusters_for_layer(use_case, use_case_table, name) res = repo.get_clusters_for_layer(use_case, table, layer_name)
if res is None or len(res) == 0: if res is None or len(res) == 0:
return Response(status=404) return Response(status=404)
else: else:
......
...@@ -16,3 +16,45 @@ def get_conn_clusters(): ...@@ -16,3 +16,45 @@ def get_conn_clusters():
else: else:
return result return result
def get_conn_clusters_use_case(use_case):
''' Gets connected_clusters from the database.
:returns: Returns similarity objects from the DB
:rtype: Dict
'''
result = repo.get_connected_clusters_for_use_case(use_case)
if result is None or len(result) == 0:
print("MongoDb Get Error: Response 404")
return Response(status=404)
else:
return result
def get_conn_clusters_table(use_case,table):
''' Gets connected_clusters from the database.
:returns: Returns similarity objects from the DB
:rtype: Dict
'''
result = repo.get_connected_clusters_for_table(use_case, table)
if result is None or len(result) == 0:
print("MongoDb Get Error: Response 404")
return Response(status=404)
else:
return result
def get_conn_clusters_name(use_case,table,layer_name):
''' Gets connected_clusters from the database.
:returns: Returns similarity objects from the DB
:rtype: Dict
'''
result = repo.get_connected_clusters_by_name(use_case,table,layer_name)
if result is None or len(result) == 0:
print("MongoDb Get Error: Response 404")
return Response(status=404)
else:
return result
...@@ -26,15 +26,15 @@ def get_by_use_case(use_case): ...@@ -26,15 +26,15 @@ def get_by_use_case(use_case):
else: else:
return Response(status=404) return Response(status=404)
def get_by_table(use_case, use_case_table): def get_by_table(use_case, table):
res = repo.get_layers_for_table(use_case, use_case_table) res = repo.get_layers_for_table(use_case, table)
if len(res) > 0: if len(res) > 0:
return [l.to_serializable_dict() for l in res] return [l.to_serializable_dict() for l in res]
else: else:
return Response(status=404) return Response(status=404)
def get_by_name(use_case, use_case_table, name): def get_by_name(use_case, table, layer_name):
res = repo.get_layer_by_name(use_case, use_case_table, name) res = repo.get_layer_by_name(use_case, table, layer_name)
if res is not None: if res is not None:
return res.to_serializable_dict() return res.to_serializable_dict()
else: else:
...@@ -43,8 +43,8 @@ def get_by_name(use_case, use_case_table, name): ...@@ -43,8 +43,8 @@ def get_by_name(use_case, use_case_table, name):
#endregion #endregion
#region nodes #region nodes
def get_nodes(use_case, use_case_table, name): def get_nodes(use_case, table, layer_name):
res = repo.get_layer_nodes(use_case, use_case_table, name) res = repo.get_layer_nodes(use_case, table, layer_name)
# print(res) # print(res)
return res return res
......
...@@ -23,3 +23,60 @@ def get_similarity(layer_name,batchNr): ...@@ -23,3 +23,60 @@ def get_similarity(layer_name,batchNr):
return Response(status=404) return Response(status=404)
else: else:
return result return result
def get_similarity_use_case(use_case,batchNr):
''' Gets cluster_similarity from the database.
:returns: Returns similarity objects from the DB
:rtype: Dict
'''
batchSize = 1000
if int(batchNr)<0:
print("Batch number needs to be a positive integer")
return Response(status=404)
skipNr = batchSize*int(batchNr)
#get_similarity(self,skipNr,batchSize, cluster_layer: str= None, run_id: str=None)
result = repo.get_similarity_use_case(skipNr, batchSize, use_case)
if result is None or len(result) == 0:
print("MongoDb Get Error: Response 404")
return Response(status=404)
else:
return result
def get_similarity_table(use_case,table,batchNr):
''' Gets cluster_similarity from the database.
:returns: Returns similarity objects from the DB
:rtype: Dict
'''
batchSize = 1000
if int(batchNr)<0:
print("Batch number needs to be a positive integer")
return Response(status=404)
skipNr = batchSize*int(batchNr)
#get_similarity(self,skipNr,batchSize, cluster_layer: str= None, run_id: str=None)
result = repo.get_similarity_table(skipNr, batchSize, use_case,table)
if result is None or len(result) == 0:
print("MongoDb Get Error: Response 404")
return Response(status=404)
else:
return result
def get_similarity_layer(use_case,table,layer_name,batchNr):
''' Gets cluster_similarity from the database.
:returns: Returns similarity objects from the DB
:rtype: Dict
'''
batchSize = 1000
if int(batchNr)<0:
print("Batch number needs to be a positive integer")
return Response(status=404)
skipNr = batchSize*int(batchNr)
#get_similarity(self,skipNr,batchSize, cluster_layer: str= None, run_id: str=None)
result = repo.get_similarity_layer(skipNr, batchSize,use_case,table, layer_name)
if result is None or len(result) == 0:
print("MongoDb Get Error: Response 404")
return Response(status=404)
else:
return result
...@@ -4,8 +4,8 @@ from db.entities import TimeSlice ...@@ -4,8 +4,8 @@ from db.entities import TimeSlice
repo = Repository() repo = Repository()
def get_by_name(use_case, use_case_table, name): def get_by_name(use_case, table, layer_name):
res = repo.get_time_slices_by_name(use_case, use_case_table, name) res = repo.get_time_slices_by_name(use_case, table, layer_name)
if res is not None and len(res) != 0: if res is not None and len(res) != 0:
return [e.to_serializable_dict() for e in res] return [e.to_serializable_dict() for e in res]
......
...@@ -7,17 +7,38 @@ repo = Repository() ...@@ -7,17 +7,38 @@ repo = Repository()
def run_similarity_calc_per_use_case(): def run_similarity_calc_per_use_case():
layers = repo.get_layers() layers = repo.get_layers()
uc_layers = {} # uc_layers = {}
# for layer in layers:
# uc = layer.use_case
# if uc not in uc_layers:
# uc_layers[uc] = []
# uc_layers[uc].append(layer.layer_name)
# for key in uc_layers:
# layers2 = uc_layers[key]
# print(f"Running for use case {key} with layers {str(layers2)}.")
# SimilarityCalc.main(layerNameList=layers2)
uc_dict = dict()
# use_case[table[layer_name]]
for layer in layers: for layer in layers:
uc = layer.use_case use_case = layer.use_case
if uc not in uc_layers: table = layer.use_case_table
uc_layers[uc] = [] if use_case not in uc_dict:
uc_layers[uc].append(layer.layer_name) uc_dict[use_case] = dict()
for key in uc_layers: #aux = uc_dict[use_case]
layers = uc_layers[key] if table not in uc_dict[use_case]:
print(f"Running for use case {key} with layers {str(layers)}.") uc_dict[use_case][table] = []
SimilarityCalc.main(layerNameList=layers)
uc_dict[use_case][table].append(layer.layer_name)
for uc in uc_dict:
for table in uc_dict[uc]:
layers2 = uc_dict[uc][table]
print(f"Running for use case {uc}, table {table}, with layers {str(layers2)}.")
SimilarityCalc.main(layers2,table,uc)
if __name__ == '__main__': if __name__ == '__main__':
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment