Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
S
SMART
Project
Project
Details
Activity
Releases
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
3
Issues
3
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Registry
Registry
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
UNI-KLU
SMART
Commits
48c4791d
Commit
48c4791d
authored
Oct 07, 2019
by
Alexander Lercher
Browse files
Options
Browse Files
Download
Plain Diff
Merge branch 'feature/semantic-linking-refactoring' into develop
parents
5f88eba2
b08e6606
Pipeline
#10
failed with stages
Changes
7
Pipelines
1
Hide whitespace changes
Inline
Side-by-side
Showing
7 changed files
with
351 additions
and
177 deletions
+351
-177
swagger.yml
...hub/semantic-linking-microservice/app/configs/swagger.yml
+36
-0
HyperGraph.py
...mantic-linking-microservice/app/initialdemo/HyperGraph.py
+137
-105
NodeInfo.py
...semantic-linking-microservice/app/initialdemo/NodeInfo.py
+17
-0
SemanticLinking.py
...c-linking-microservice/app/initialdemo/SemanticLinking.py
+76
-72
graphinfo.py
data-hub/semantic-linking-microservice/app/rest/graphinfo.py
+8
-0
manage_sys_paths.py
...b/semantic-linking-microservice/tests/manage_sys_paths.py
+8
-0
test_HyperGraph.py
...ub/semantic-linking-microservice/tests/test_HyperGraph.py
+69
-0
No files found.
data-hub/semantic-linking-microservice/app/configs/swagger.yml
View file @
48c4791d
...
...
@@ -28,3 +28,39 @@ paths:
responses
:
200
:
description
:
"
Successful
echo
of
request
data"
/graphinfo
:
get
:
operationId
:
"
rest.graphinfo.get"
tags
:
-
"
GraphInfo"
summary
:
"
Get
info
about
clustered
nodes"
description
:
"
Returns
multiple
metrics
for
all
nodes
created
by
analyzing
and
clustering
the
blockchain
traces"
parameters
:
[]
responses
:
200
:
description
:
"
Successful
operation"
schema
:
$ref
:
"
#/definitions/NodeInfo"
definitions
:
NodeInfo
:
type
:
"
object"
properties
:
label
:
type
:
string
centrality
:
type
:
number
adjacencies
:
type
:
integer
degree
:
type
:
number
betweenness
:
type
:
object
properties
:
to_node
:
type
:
integer
value
:
type
:
number
betweenness_centrality
:
type
:
number
\ No newline at end of file
data-hub/semantic-linking-microservice/app/initialdemo/HyperGraph.py
View file @
48c4791d
import
json
nodeIds
=
[]
destIds
=
[]
clusterlabels
=
[]
destclusterlabel
=
[]
cluster
=
[]
labalvlues
=
[]
class
HyperGraph
:
def
classify
():
df_nodes
=
load_values
()
cluster_labels
=
[]
dest_cluster_labels
=
[]
label_values
=
[]
for
row
in
df_nodes
:
def
__init__
(
self
):
pass
for
j
in
range
(
len
(
row
[
'TransactionFrom'
])):
print
(
" Input Ids: "
,
row
[
'TransactionFrom'
][
j
])
nodeIds
.
append
(
row
[
'TransactionFrom'
])
print
(
"This is nodes: "
,
nodeIds
)
def
classify
(
self
):
df_nodes
=
self
.
load_values
()
ret_val
=
self
.
init
(
df_nodes
)
nodeIds
=
ret_val
[
'nodeIds'
]
clusterlabels
=
ret_val
[
'clusterlabels'
]
destIds
=
ret_val
[
'destIds'
]
clusterlabels
=
self
.
classify_input
(
nodeIds
,
clusterlabels
)
for
row
in
df_nodes
:
destIds
.
append
(
row
[
'TransactionTo'
])
labelvals
=
self
.
calc_cluster_num
(
clusterlabels
)
cluster
=
self
.
cluster_with_labels
(
nodeIds
,
clusterlabels
,
labelvals
)
for
row
in
range
(
len
(
nodeIds
)):
print
(
nodeIds
[
row
])
cluster
=
self
.
remove_duplicates
(
cluster
)
print
(
"Finish InputIDs"
)
i
=
0
for
row
in
range
(
len
(
nodeIds
)):
destclusterlabel
=
self
.
cluster_dest_ids
(
labelvals
,
cluster
,
destIds
)
clusterlabels
.
append
(
row
)
i
+=
1
print
(
i
)
self
.
cluster_labels
=
clusterlabels
self
.
dest_cluster_labels
=
destclusterlabel
self
.
labelvals
=
labelvals
"""" classifying Inputs"""
"""" Labaling inputs"""
for
row
in
range
(
len
(
nodeIds
)):
def
load_values
(
self
):
with
open
(
"mult_in_out_large.json"
,
"r"
)
as
json_file
:
df_nodes
=
json
.
load
(
json_file
)
for
rown
in
range
(
len
(
nodeIds
[
row
])):
return
df_nodes
for
row1
in
range
(
len
(
nodeIds
)):
for
rown1
in
range
(
len
(
nodeIds
[
row1
])):
if
(
nodeIds
[
row
][
rown
]
==
nodeIds
[
row1
][
rown1
]):
# print("row: ",row,"row1: ",row1)
if
(
row
<
row1
):
for
row2
in
clusterlabels
:
if
(
clusterlabels
[
row1
]
==
clusterlabels
[
row2
]):
clusterlabels
[
row2
]
=
clusterlabels
[
row
]
clusterlabels
[
row1
]
=
clusterlabels
[
row
]
def
init
(
self
,
df_nodes
):
nodeIds
=
[]
clusterlabels
=
[]
destIds
=
[]
else
:
for
row2
in
clusterlabels
:
if
(
clusterlabels
[
row
]
==
clusterlabels
[
row2
]):
clusterlabels
[
row2
]
=
clusterlabels
[
row1
]
clusterlabels
[
row
]
=
clusterlabels
[
row1
]
for
row
in
df_nodes
:
for
j
in
range
(
len
(
row
[
'TransactionFrom'
]))
:
print
(
" Input Ids: "
,
row
[
'TransactionFrom'
][
j
])
nodeIds
.
append
(
row
[
'TransactionFrom'
])
print
(
"This is nodes: "
,
nodeIds
)
for
row
in
df_nodes
:
destIds
.
append
(
row
[
'TransactionTo'
])
print
(
clusterlabels
)
print
(
"cluster labels:"
,
len
(
clusterlabels
))
print
(
"NodeIDs: "
,
len
(
nodeIds
))
"""" Calculating the number of clusters"""
clusternum
=
1
labalvlues
.
append
(
clusterlabels
[
0
])
for
row
in
range
(
len
(
clusterlabels
)):
flag
=
True
for
row1
in
range
(
len
(
labalvlues
)):
if
(
clusterlabels
[
row
]
==
labalvlues
[
row1
]):
flag
=
False
if
(
flag
):
clusternum
=
+
1
labalvlues
.
append
(
clusterlabels
[
row
])
print
(
"label values (source Ids in the network): "
,
labalvlues
,
" and the number of clusters is: "
,
len
(
labalvlues
))
for
row
in
range
(
len
(
nodeIds
)):
print
(
nodeIds
[
row
])
print
(
"Finish InputIDs"
)
i
=
0
for
row
in
range
(
len
(
nodeIds
)):
clusterlabels
.
append
(
row
)
i
+=
1
print
(
i
)
return
{
'nodeIds'
:
nodeIds
,
'clusterlabels'
:
clusterlabels
,
'destIds'
:
destIds
}
def
classify_input
(
self
,
nodeIds
,
clusterlabels
):
"""" classifying Inputs"""
"""" Labaling inputs"""
for
row
in
range
(
len
(
nodeIds
)):
"""" clustering Ids according to their labels"""
for
rown
in
range
(
len
(
nodeIds
[
row
])):
for
row
in
range
(
len
(
labalvlues
)):
cluster
.
append
([])
for
row3
in
range
(
len
(
nodeIds
)):
if
(
labalvlues
[
row
]
==
clusterlabels
[
row3
]):
cluster
[
row
]
.
extend
(
nodeIds
[
row3
])
print
(
"clusters: "
,
cluster
)
for
row1
in
range
(
len
(
nodeIds
)):
for
rown1
in
range
(
len
(
nodeIds
[
row1
])):
if
(
nodeIds
[
row
][
rown
]
==
nodeIds
[
row1
][
rown1
]):
# print("row: ",row,"row1: ",row1)
if
(
row
<
row1
):
for
row2
in
clusterlabels
:
if
(
clusterlabels
[
row1
]
==
clusterlabels
[
row2
]):
clusterlabels
[
row2
]
=
clusterlabels
[
row
]
clusterlabels
[
row1
]
=
clusterlabels
[
row
]
else
:
for
row2
in
clusterlabels
:
if
(
clusterlabels
[
row
]
==
clusterlabels
[
row2
]):
clusterlabels
[
row2
]
=
clusterlabels
[
row1
]
clusterlabels
[
row
]
=
clusterlabels
[
row1
]
print
(
clusterlabels
)
print
(
"cluster labels:"
,
len
(
clusterlabels
))
print
(
"NodeIDs: "
,
len
(
nodeIds
))
return
clusterlabels
""" Removing duplicating items in cluster"""
def
calc_cluster_num
(
self
,
clusterlabels
):
"""" Calculating the number of clusters"""
labelvals
=
[]
flag
=
True
while
(
flag
):
for
row
in
range
(
len
(
cluster
)):
flag
=
False
for
row1
in
range
(
len
(
cluster
[
row
])):
flag
=
False
for
row2
in
range
(
len
(
cluster
[
row
])):
if
(
row1
!=
row2
):
if
(
cluster
[
row
][
row1
]
==
cluster
[
row
][
row2
]):
del
cluster
[
row
][
row2
]
flag
=
True
break
if
(
flag
):
break
if
(
flag
):
break
labelvals
.
append
(
clusterlabels
[
0
])
for
row
in
range
(
len
(
clusterlabels
)):
flag
=
True
for
row1
in
range
(
len
(
labelvals
)):
if
(
clusterlabels
[
row
]
==
labelvals
[
row1
]):
flag
=
False
print
(
"cluster:"
,
cluster
)
if
(
flag
):
labelvals
.
append
(
clusterlabels
[
row
])
print
(
"label values (source Ids in the network): "
,
labelvals
,
" and the number of clusters is: "
,
len
(
labelvals
))
return
labelvals
def
cluster_with_labels
(
self
,
nodeIds
,
clusterlabels
,
labelvals
):
"""" clustering Ids according to their labels"""
cluster
=
[]
"""" Clustering Destination Ids """
for
row
in
range
(
len
(
destIds
)):
destclusterlabel
.
append
([])
for
row2
in
range
(
len
(
destIds
[
row
])):
flag
=
True
for
rownum
in
range
(
len
(
labalvlues
)):
for
row1
in
range
(
len
(
cluster
[
rownum
])):
for
row
in
range
(
len
(
labelvals
)):
cluster
.
append
([])
for
row3
in
range
(
len
(
nodeIds
)):
if
(
labelvals
[
row
]
==
clusterlabels
[
row3
]):
cluster
[
row
]
.
extend
(
nodeIds
[
row3
])
print
(
"clusters: "
,
cluster
)
if
(
destIds
[
row
][
row2
]
==
cluster
[
rownum
][
row1
]):
destclusterlabel
[
row
]
.
append
(
labalvlues
[
rownum
])
flag
=
False
if
(
flag
):
destclusterlabel
.
append
(
destIds
[
row
][
row2
])
return
cluster
print
(
"destination labels (destination Ids): "
,
destclusterlabel
)
def
remove_duplicates
(
self
,
cluster
):
""" Removing duplicating items in cluster"""
def
load_values
():
with
open
(
"mult_in_out_large.json"
,
"r"
)
as
json_file
:
df_nodes
=
json
.
load
(
json_file
)
return
df_nodes
\ No newline at end of file
flag
=
True
while
(
flag
):
for
row
in
range
(
len
(
cluster
)):
flag
=
False
for
row1
in
range
(
len
(
cluster
[
row
])):
flag
=
False
for
row2
in
range
(
len
(
cluster
[
row
])):
if
(
row1
!=
row2
):
if
(
cluster
[
row
][
row1
]
==
cluster
[
row
][
row2
]):
del
cluster
[
row
][
row2
]
flag
=
True
break
if
(
flag
):
break
if
(
flag
):
break
print
(
"cluster:"
,
cluster
)
return
cluster
def
cluster_dest_ids
(
self
,
labelvals
,
cluster
,
destIds
):
"""" Clustering Destination Ids """
destclusterlabel
=
[]
for
row
in
range
(
len
(
destIds
)):
destclusterlabel
.
append
([])
for
row2
in
range
(
len
(
destIds
[
row
])):
flag
=
True
for
rownum
in
range
(
len
(
labelvals
)):
for
row1
in
range
(
len
(
cluster
[
rownum
])):
if
(
destIds
[
row
][
row2
]
==
cluster
[
rownum
][
row1
]):
destclusterlabel
[
row
]
.
append
(
labelvals
[
rownum
])
flag
=
False
if
(
flag
):
destclusterlabel
.
append
(
destIds
[
row
][
row2
])
print
(
"destination labels (destination Ids): "
,
destclusterlabel
)
return
destclusterlabel
\ No newline at end of file
data-hub/semantic-linking-microservice/app/initialdemo/NodeInfo.py
0 → 100644
View file @
48c4791d
class
NodeInfo
:
'''Contains information about the individual nodes in the generated graph'''
label
=
None
centrality
=
None
adjacencies
=
None
degree
=
None
betweenness
=
None
betweenness_centrality
=
None
def
__init__
(
self
):
self
.
label
=
'Node123'
self
.
centrality
=
0
self
.
adjacencies
=
0
self
.
degree
=
0
self
.
betweenness
=
None
self
.
betweenness_centrality
=
0
data-hub/semantic-linking-microservice/app/initialdemo/SemanticLinking.py
View file @
48c4791d
import
networkx
as
nx
import
matplotlib.pyplot
as
plt
from
collections
import
Counter
import
HyperGraph
as
hg
from
HyperGraph
import
HyperGraph
import
warnings
# pip install networkx
...
...
@@ -13,9 +13,29 @@ import warnings
class
SemanticLinking
:
def
__init__
(
self
):
hg
.
classify
()
hg
:
HyperGraph
=
None
df_nodes
=
[]
destf_nodes
=
[]
G
:
nx
.
MultiDiGraph
=
None
color_map
=
{
1
:
'#f09494'
,
2
:
'#eebcbc'
,
3
:
'#72bbd0'
,
4
:
'#91f0a1'
,
5
:
'#629fff'
,
6
:
'#bcc2f2'
,
7
:
'#eebcbc'
,
8
:
'#f1f0c0'
,
9
:
'#d2ffe7'
,
10
:
'#caf3a6'
,
11
:
'#ffdf55'
,
12
:
'#ef77aa'
,
13
:
'#d6dcff'
,
14
:
'#d2f5f0'
}
def
__init__
(
self
):
warnings
.
filterwarnings
(
'ignore'
)
# init HyperGraph
self
.
hg
=
HyperGraph
()
self
.
hg
.
classify
()
self
.
df_nodes
=
self
.
hg
.
cluster_labels
self
.
destf_nodes
=
self
.
hg
.
dest_cluster_labels
# init visual graph
self
.
G
=
nx
.
MultiDiGraph
(
day
=
"Stackoverflow"
)
def
_color_network
(
self
,
G
):
"""Colors the network so that neighboring nodes all have distinct colors.
...
...
@@ -30,7 +50,6 @@ class SemanticLinking:
coloring
[
color
]
=
set
([
node
])
return
coloring
def
_labeling_complete
(
self
,
labeling
,
G
):
"""Determines whether or not LPA is done.
...
...
@@ -42,7 +61,6 @@ class SemanticLinking:
return
all
(
labeling
[
v
]
in
self
.
_most_frequent_labels
(
v
,
labeling
,
G
)
for
v
in
G
if
len
(
G
[
v
])
>
0
)
def
_most_frequent_labels
(
self
,
node
,
labeling
,
G
):
"""Returns a set of all labels with maximum frequency in `labeling`.
...
...
@@ -58,7 +76,6 @@ class SemanticLinking:
max_freq
=
max
(
freqs
.
values
())
return
{
label
for
label
,
freq
in
freqs
.
items
()
if
freq
==
max_freq
}
def
_update_label
(
self
,
node
,
labeling
,
G
):
"""Updates the label of a node using the Prec-Max tie breaking algorithm
...
...
@@ -71,57 +88,30 @@ class SemanticLinking:
elif
len
(
high_labels
)
>
1
:
# Prec-Max
if
labeling
[
node
]
not
in
high_labels
:
labeling
[
node
]
=
max
(
high_labels
)
warnings
.
filterwarnings
(
'ignore'
)
#G = nx.DiGraph(directed=True)
G
=
nx
.
MultiDiGraph
(
day
=
"Stackoverflow"
)
df_nodes
=
hg
.
clusterlabels
destf_nodes
=
hg
.
destclusterlabel
color_map
=
{
1
:
'#f09494'
,
2
:
'#eebcbc'
,
3
:
'#72bbd0'
,
4
:
'#91f0a1'
,
5
:
'#629fff'
,
6
:
'#bcc2f2'
,
7
:
'#eebcbc'
,
8
:
'#f1f0c0'
,
9
:
'#d2ffe7'
,
10
:
'#caf3a6'
,
11
:
'#ffdf55'
,
12
:
'#ef77aa'
,
13
:
'#d6dcff'
,
14
:
'#d2f5f0'
}
i
=
0
graphedge
=
[]
weigth
=
[]
sourcedestination
=
[]
source
=
[]
dest
=
[]
edge_width
=
[]
weight1
=
[]
node_adjacencies
=
[]
labeling
=
{}
labeling
[
node
]
=
max
(
high_labels
)
def
drawedges
(
self
):
"""drawing edges in graph"""
labelvalues
=
self
.
hg
.
label_values
weight1
=
[]
for
drow
in
range
(
len
(
self
.
df_nodes
)):
for
row
in
range
(
len
(
self
.
destf_nodes
[
drow
])):
self
.
G
.
add_edge
(
self
.
df_nodes
[
drow
],
self
.
destf_nodes
[
drow
][
row
])
for
row
in
range
(
len
(
hg
.
labalv
lues
)):
for
row1
in
range
(
len
(
hg
.
labalv
lues
)):
self
.
weight1
.
append
(
self
.
G
.
number_of_edges
(
hg
.
labalvlues
[
row
],
hg
.
labalv
lues
[
row1
]))
print
(
"The number of coccurance from node "
,
hg
.
labalvlues
[
row
],
"to node "
,
hg
.
labalvlues
[
row1
],
": "
,
self
.
weight1
[
row1
])
for
row
in
range
(
len
(
labelva
lues
)):
for
row1
in
range
(
len
(
labelva
lues
)):
weight1
.
append
(
self
.
G
.
number_of_edges
(
labelvalues
[
row
],
labelva
lues
[
row1
]))
print
(
"The number of coccurance from node "
,
labelvalues
[
row
],
"to node "
,
labelvalues
[
row1
],
": "
,
weight1
[
row1
])
self
.
G
.
__setattr__
(
'weight'
,
self
.
weight1
)
self
.
G
.
weight
=
weight1
return
weight1
def
dolabeling
(
self
):
"""label_propagation_communities(G) """
coloring
=
self
.
_color_network
(
self
.
G
)
# Create a unique label for each node in the graph
# Create a unique label for each node in the graph
labeling
=
{
v
:
k
for
k
,
v
in
enumerate
(
self
.
G
)}
print
(
"lable value: "
,
labeling
.
values
())
while
not
self
.
_labeling_complete
(
labeling
,
self
.
G
):
...
...
@@ -132,43 +122,46 @@ class SemanticLinking:
self
.
_update_label
(
n
,
labeling
,
self
.
G
)
for
label
in
set
(
labeling
.
values
()):
print
(
"lable value: "
,
labeling
.
values
())
self
.
labeling
=
labeling
return
labeling
def
findigneighbors
(
self
):
""" findig nodes' adjecencies"""
node_text
=
[]
node_adjacencies
=
[]
for
node
,
adjacencies
in
enumerate
(
self
.
G
.
adjacency
()):
self
.
node_adjacencies
.
append
(
len
(
adjacencies
[
1
]))
node_adjacencies
.
append
(
len
(
adjacencies
[
1
]))
node_text
.
append
(
'# of connections: '
+
str
(
len
(
adjacencies
[
1
])))
self
.
G
.
color
=
self
.
node_adjacencies
self
.
G
.
color
=
node_adjacencies
return
node_adjacencies
def
result
(
self
):
plt
.
figure
(
figsize
=
(
25
,
25
))
options
=
{
'with_labels'
:
True
,
'font_weight'
:
'regular'
,
}
def
print_metrics
(
self
,
weight1
,
labeling
,
node_adjacencies
):
weigth
=
[]
edge_width
=
[]
plt
.
figure
(
figsize
=
(
25
,
25
))
# colors = [color_map[G.node[node][1]] for node in G]
# sizes = [G.node[node]['Timestamp'] * 10 for node in G]
d
=
nx
.
degree_centrality
(
self
.
G
)
d_list
=
list
(
d
.
values
())
print
(
"node centrality: "
,
d_list
)
print
(
"node adjacencies: "
,
self
.
node_adjacencies
)
for
row
in
range
(
len
(
self
.
weigth
)):
self
.
edge_width
.
append
([])
for
drow
in
range
(
len
(
self
.
weigth
[
row
])):
self
.
edge_width
[
row
]
.
append
(
self
.
weigth
[
row
][
drow
])
node_size
=
[
v
*
80
for
v
in
d
.
values
()]
# setting node size based on node centrality
edge_width
=
[
row
*
0.5
for
row
in
self
.
weight1
]
print
(
"node adjacencies: "
,
node_adjacencies
)
for
row
in
range
(
len
(
weigth
)):
edge_width
.
append
([])
for
drow
in
range
(
len
(
weigth
[
row
])):
edge_width
[
row
]
.
append
(
weigth
[
row
][
drow
])
edge_width
=
[
row
*
0.5
for
row
in
weight1
]
print
(
"Nodes' Degree: "
,
nx
.
degree
(
self
.
G
))
print
(
"Nodes' Betweeness "
,
nx
.
edge_betweenness_centrality
(
self
.
G
))
print
(
"Nodes' Betweeness-centrality: "
,
nx
.
betweenness_centrality
(
self
.
G
))
def
draw_edges
(
self
,
weight1
,
labeling
,
node_adjacencies
):
"""
Using the spring layout :
- k controls the distance between the nodes and varies between 0 and 1
...
...
@@ -176,16 +169,22 @@ class SemanticLinking:
default k=0.1 and iterations=50
"""
labels2
=
{}
labels2
=
{}
options
=
{
'with_labels'
:
True
,
'font_weight'
:
'regular'
,
}
d
=
nx
.
degree_centrality
(
self
.
G
)
node_size
=
[
v
*
80
for
v
in
d
.
values
()]
# setting node size based on node centrality
for
idx
,
edge
in
enumerate
(
self
.
G
.
edges
):
labels2
[
edge
]
=
"s"
pos_nodes
=
nx
.
spring_layout
(
self
.
G
,
k
=
0.25
,
iterations
=
50
)
nx
.
draw
(
self
.
G
,
pos_nodes
,
node_color
=
self
.
node_adjacencies
,
node_size
=
node_size
,
width
=
2
,
arrowstyle
=
'->'
,
arrowsize
=
10
,
weight
=
self
.
weight1
,
edge_color
=
'gray'
,
**
options
)
nx
.
draw
(
self
.
G
,
pos_nodes
,
node_color
=
node_adjacencies
,
node_size
=
node_size
,
width
=
2
,
arrowstyle
=
'->'
,
arrowsize
=
10
,
weight
=
weight1
,
edge_color
=
'gray'
,
**
options
)
edge_labels
=
nx
.
get_edge_attributes
(
self
.
G
,
'weight'
)
...
...
@@ -193,18 +192,23 @@ class SemanticLinking:
for
node
,
coords
in
pos_nodes
.
items
():
pos_attrs
[
node
]
=
(
coords
[
0
],
coords
[
1
]
+
0.02
)
nx
.
draw_networkx_edge_labels
(
self
.
G
,
pos_nodes
,
edge_labels
=
edge_labels
,
font_size
=
10
,
font_color
=
'red'
)
nx
.
draw_networkx_labels
(
self
.
G
,
pos_attrs
,
labels
=
self
.
labeling
,
font_size
=
10
,
font_color
=
'red'
)
nx
.
draw_networkx_labels
(
self
.
G
,
pos_attrs
,
labels
=
labeling
,
font_size
=
10
,
font_color
=
'red'
)
ax
=
plt
.
gca
()
ax
.
collections
[
0
]
.
set_edgecolor
(
"#555555"
)
plt
.
show
()
def
main
(
self
):
self
.
drawedges
()
self
.
dolabeling
()
self
.
findigneighbors
()
self
.
result
()
weight1
=
self
.
drawedges
()
labeling
=
self
.
dolabeling
()
node_adjacencies
=
self
.
findigneighbors
()
self
.
print_metrics
(
weight1
,
labeling
,
node_adjacencies
)
self
.
draw_edges
(
weight1
,
labeling
,
node_adjacencies
)
linking
=
SemanticLinking
()
linking
.
main
()
\ No newline at end of file
if
__name__
==
'__main__'
:
linking
=
SemanticLinking
()
linking
.
main
()
\ No newline at end of file
data-hub/semantic-linking-microservice/app/rest/graphinfo.py
0 → 100644
View file @
48c4791d
from
flask
import
request
,
Response
from
initialdemo.NodeInfo
import
NodeInfo
import
pickle
as
json
def
get
():
# TODO return real graph infos
ni
=
NodeInfo
()
return
[
ni
.
__dict__
]
data-hub/semantic-linking-microservice/tests/manage_sys_paths.py
0 → 100644
View file @
48c4791d
# add modules folder to interpreter path
import
sys
import
os
modules_paths
=
[
'../app/'
,
'../../../modules/'
]
for
path
in
modules_paths
:
if
os
.
path
.
exists
(
path
):
sys
.
path
.
insert
(
1
,
path
)
print
(
f
"added {path}"
)
data-hub/semantic-linking-microservice/tests/test_HyperGraph.py
0 → 100644
View file @
48c4791d
import
unittest
import
manage_sys_paths
import
json
from
initialdemo.HyperGraph
import
HyperGraph
class
Test_HyperGraph
(
unittest
.
TestCase
):
hypergraph
:
HyperGraph
=
None
def
setUp
(
self
):
self
.
hypergraph
=
HyperGraph
()
def
test_removeDuplicates_noDupOrdered_sameContent
(
self
):
list_
=
[[
1
,
2
,
3
]]
set_
=
self
.
hypergraph
.
remove_duplicates
(
list_
)
self
.
assertEqual
(
list_
,
set_
)
def
test_removeDuplicates_oneDupOrdered_removed
(
self
):
list_
=
[[
1
,
2
,
3
,
3
]]
set_
=
self
.
hypergraph
.
remove_duplicates
(
list_
)
self
.
assertEqual
([[
1
,
2
,
3
]],
set_
)
def
test_removeDuplicates_multDupOrdered_allRemoved
(
self
):
list_
=
[[
1
,
1
,
2
,
3
,
3
,
4
]]
set_
=
self
.
hypergraph
.
remove_duplicates
(
list_
)
self
.
assertEqual
([[
1
,
2
,
3
,
4
]],
set_
)
def
test_removeDuplicates_noDupUnordered_sameContent
(
self
):
list_
=
[[
1
,
2
,
3
,
5
,
9
,
4
,
30
,
15
]]
set_
=
self
.
hypergraph
.
remove_duplicates
(
list_
)
self
.
assertEqual
(
list_
,
set_
)
def
test_removeDuplicates_oneDupUnordered_removed
(
self
):
list_
=
[[
1
,
2
,
3
,
5
,
9
,
4
,
30
,
5
,
15
]]
set_
=
self
.
hypergraph
.
remove_duplicates
(
list_
)
self
.
assertEqual
([[
1
,
2
,
3
,
5
,
9
,
4
,
30
,
15
]],
set_
)
def
test_removeDuplicates_multDupUnordered_allRemoved
(
self
):
list_
=
[[
1
,
2
,
5
,
3
,
1
,
70
,
25
,
-
1
,
7
,
-
1
]]
set_
=
self
.
hypergraph
.
remove_duplicates
(
list_
)
self
.
assertEqual
([[
1
,
2
,
5
,
3
,
70
,
25
,
-
1
,
7
]],
set_
)
def
test_removeDuplicates_oneDupOrderedMultDim_removed
(
self
):
list_
=
[[
1
,
1
,
2
],[
2
,
2
,
3
]]
set_
=
self
.
hypergraph
.
remove_duplicates
(
list_
)
self
.
assertEqual
([[
1
,
2
],[
2
,
3
]],
set_
)
def
test_removeDuplicates_multDupOrderedMultDim_allRemoved
(
self
):
list_
=
[[
1
,
1
,
2
,
3
,
3
],[
2
,
2
,
3
,
4
,
4
,
5
]]
set_
=
self
.
hypergraph
.
remove_duplicates
(
list_
)
self
.
assertEqual
([[
1
,
2
,
3
],[
2
,
3
,
4
,
5
]],
set_
)
def
test_removeDuplicates_multDupUnorderedMultDim_allRemoved
(
self
):
list_
=
[[
1
,
2
,
5
,
2
,
7
,
3
],[
-
10
,
5
,
3
,
20
,
-
10
,
-
7
]]
set_
=
self
.
hypergraph
.
remove_duplicates
(
list_
)
self
.
assertEqual
([[
1
,
2
,
5
,
7
,
3
],[
-
10
,
5
,
3
,
20
,
-
7
]],
set_
)
def
test_removeDuplicates_multDupUnorderedMultDim2_allRemoved
(
self
):
list_
=
[[
1
,
2
,
5
,
2
,
7
,
3
],[
-
10
,
5
,
3
,
20
,
-
10
,
-
7
],[
1
,
2
]]
set_
=
self
.
hypergraph
.
remove_duplicates
(
list_
)
self
.
assertEqual
([[
1
,
2
,
5
,
7
,
3
],[
-
10
,
5
,
3
,
20
,
-
7
],[
1
,
2
]],
set_
)
def
test_removeDuplicates_multDupUnorderedTripleDim_noDupRemoved
(
self
):
list_
=
[[[
1
,
2
,
5
,
2
,
7
,
3
],[
-
10
,
5
,
3
,
20
,
-
10
,
-
7
],[
1
,
2
]]]
set_
=
self
.
hypergraph
.
remove_duplicates
(
list_
)
self
.
assertEqual
(
list_
,
set_
)
if
__name__
==
'__main__'
:
unittest
.
main
()
\ No newline at end of file
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment