Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
S
SMART
Project
Project
Details
Activity
Releases
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
3
Issues
3
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Registry
Registry
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
UNI-KLU
SMART
Commits
2caa4a25
Commit
2caa4a25
authored
Sep 09, 2019
by
zahra
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Semantic linking was added.
parent
2cae7884
Changes
5
Expand all
Hide whitespace changes
Inline
Side-by-side
Showing
5 changed files
with
11497 additions
and
10 deletions
+11497
-10
.gitignore
.gitignore
+2
-1
HyperGraph.py
...mantic-linking-microservice/app/initialdemo/HyperGraph.py
+140
-0
SemanticLinking.py
...c-linking-microservice/app/initialdemo/SemanticLinking.py
+205
-0
mult_in_out.json
...tic-linking-microservice/app/initialdemo/mult_in_out.json
+11150
-0
Processor.py
...-linking-microservice/app/intelligence_zahra/Processor.py
+0
-9
No files found.
.gitignore
View file @
2caa4a25
**/__pycache__
**/.vscode
*.log
\ No newline at end of file
**/.idea
*.log
data-hub/semantic-linking-microservice/app/initialdemo/HyperGraph.py
0 → 100644
View file @
2caa4a25
import
networkx
as
nx
import
matplotlib.pyplot
as
plt
import
pandas
as
pd
import
json
with
open
(
"mult_in_out.json"
,
"r"
)
as
json_file
:
df_nodes
=
json
.
load
(
json_file
)
nodeIds
=
[]
destIds
=
[]
clusterlabels
=
[]
destclusterlabel
=
[]
cluster
=
[]
labalvlues
=
[]
i
=
0
for
row
in
df_nodes
:
for
j
in
range
(
len
(
row
[
'TransactionFrom'
])):
print
(
" Input Ids: "
,
row
[
'TransactionFrom'
][
j
])
nodeIds
.
append
(
row
[
'TransactionFrom'
])
print
(
"This is nodes: "
,
nodeIds
)
for
row
in
df_nodes
:
destIds
.
append
(
row
[
'TransactionTo'
])
for
row
in
range
(
len
(
nodeIds
)):
print
(
nodeIds
[
row
])
print
(
"Finish InputIDs"
)
for
row
in
range
(
len
(
nodeIds
)):
clusterlabels
.
append
(
row
)
i
+=
1
print
(
i
)
"""" classifying Inputs"""
"""" Labaling inputs"""
for
row
in
range
(
len
(
nodeIds
)):
for
rown
in
range
(
len
(
nodeIds
[
row
])):
for
row1
in
range
(
len
(
nodeIds
)):
for
rown1
in
range
(
len
(
nodeIds
[
row1
])):
if
(
nodeIds
[
row
][
rown
]
==
nodeIds
[
row1
][
rown1
]):
# print("row: ",row,"row1: ",row1)
if
(
row
<
row1
):
for
row2
in
clusterlabels
:
if
(
clusterlabels
[
row1
]
==
clusterlabels
[
row2
]):
clusterlabels
[
row2
]
=
clusterlabels
[
row
]
clusterlabels
[
row1
]
=
clusterlabels
[
row
]
else
:
for
row2
in
clusterlabels
:
if
(
clusterlabels
[
row
]
==
clusterlabels
[
row2
]):
clusterlabels
[
row2
]
=
clusterlabels
[
row1
]
clusterlabels
[
row
]
=
clusterlabels
[
row1
]
print
(
clusterlabels
)
print
(
"cluster labels:"
,
len
(
clusterlabels
))
print
(
"NodeIDs: "
,
len
(
nodeIds
))
"""" Calculating the number of clusters"""
clusternum
=
1
labalvlues
.
append
(
clusterlabels
[
0
])
for
row
in
range
(
len
(
clusterlabels
)):
flag
=
True
for
row1
in
range
(
len
(
labalvlues
)):
if
(
clusterlabels
[
row
]
==
labalvlues
[
row1
]):
flag
=
False
if
(
flag
):
clusternum
=
+
1
labalvlues
.
append
(
clusterlabels
[
row
])
print
(
"label values (source Ids in the network): "
,
labalvlues
,
" and the number of clusters is: "
,
len
(
labalvlues
))
"""" clustering Ids according to their labels"""
for
row
in
range
(
len
(
labalvlues
)):
cluster
.
append
([])
for
row3
in
range
(
len
(
nodeIds
)):
if
(
labalvlues
[
row
]
==
clusterlabels
[
row3
]):
cluster
[
row
]
.
extend
(
nodeIds
[
row3
])
print
(
"clusters: "
,
cluster
)
""" Removing duplicating items in cluster"""
flag
=
True
while
(
flag
):
for
row
in
range
(
len
(
cluster
)):
flag
=
False
for
row1
in
range
(
len
(
cluster
[
row
])):
flag
=
False
for
row2
in
range
(
len
(
cluster
[
row
])):
if
(
row1
!=
row2
):
if
(
cluster
[
row
][
row1
]
==
cluster
[
row
][
row2
]):
del
cluster
[
row
][
row2
]
flag
=
True
break
if
(
flag
):
break
if
(
flag
):
break
print
(
"cluster:"
,
cluster
)
"""" Clustering Destination Ids """
for
row
in
range
(
len
(
destIds
)):
destclusterlabel
.
append
([])
for
row2
in
range
(
len
(
destIds
[
row
])):
flag
=
True
for
rownum
in
range
(
len
(
labalvlues
)):
for
row1
in
range
(
len
(
cluster
[
rownum
])):
if
(
destIds
[
row
][
row2
]
==
cluster
[
rownum
][
row1
]):
destclusterlabel
[
row
]
.
append
(
labalvlues
[
rownum
])
flag
=
False
if
(
flag
):
destclusterlabel
.
append
(
destIds
[
row
][
row2
])
print
(
"destination labels (destination Ids): "
,
destclusterlabel
)
data-hub/semantic-linking-microservice/app/initialdemo/SemanticLinking.py
0 → 100644
View file @
2caa4a25
import
networkx
as
nx
import
matplotlib.pyplot
as
plt
from
collections
import
Counter
import
HyperGraph
as
hg
import
pandas
as
pd
import
json
import
warnings
import
csv
import
community
import
time
import
mplleaflet
import
values
as
values
from
matplotlib
import
colors
def
_color_network
(
G
):
"""Colors the network so that neighboring nodes all have distinct colors.
Returns a dict keyed by color to a set of nodes with that color.
"""
coloring
=
dict
()
# color => set(node)
colors
=
nx
.
coloring
.
greedy_color
(
G
)
for
node
,
color
in
colors
.
items
():
if
color
in
coloring
:
coloring
[
color
]
.
add
(
node
)
else
:
coloring
[
color
]
=
set
([
node
])
return
coloring
def
_labeling_complete
(
labeling
,
G
):
"""Determines whether or not LPA is done.
Label propagation is complete when all nodes have a label that is
in the set of highest frequency labels amongst its neighbors.
Nodes with no neighbors are considered complete.
"""
return
all
(
labeling
[
v
]
in
_most_frequent_labels
(
v
,
labeling
,
G
)
for
v
in
G
if
len
(
G
[
v
])
>
0
)
def
_most_frequent_labels
(
node
,
labeling
,
G
):
"""Returns a set of all labels with maximum frequency in `labeling`.
Input `labeling` should be a dict keyed by node to labels.
"""
if
not
G
[
node
]:
# Nodes with no neighbors are themselves a community and are labeled
# accordingly, hence the immediate if statement.
return
{
labeling
[
node
]}
# Compute the frequencies of all neighbours of node
freqs
=
Counter
(
labeling
[
q
]
for
q
in
G
[
node
])
max_freq
=
max
(
freqs
.
values
())
return
{
label
for
label
,
freq
in
freqs
.
items
()
if
freq
==
max_freq
}
def
_update_label
(
node
,
labeling
,
G
):
"""Updates the label of a node using the Prec-Max tie breaking algorithm
The algorithm is explained in: 'Community Detection via Semi-Synchronous
Label Propagation Algorithms' Cordasco and Gargano, 2011
"""
high_labels
=
_most_frequent_labels
(
node
,
labeling
,
G
)
if
len
(
high_labels
)
==
1
:
labeling
[
node
]
=
high_labels
.
pop
()
elif
len
(
high_labels
)
>
1
:
# Prec-Max
if
labeling
[
node
]
not
in
high_labels
:
labeling
[
node
]
=
max
(
high_labels
)
warnings
.
filterwarnings
(
'ignore'
)
#G = nx.DiGraph(directed=True)
G
=
nx
.
MultiDiGraph
(
day
=
"Stackoverflow"
)
df_nodes
=
hg
.
clusterlabels
destf_nodes
=
hg
.
destclusterlabel
color_map
=
{
1
:
'#f09494'
,
2
:
'#eebcbc'
,
3
:
'#72bbd0'
,
4
:
'#91f0a1'
,
5
:
'#629fff'
,
6
:
'#bcc2f2'
,
7
:
'#eebcbc'
,
8
:
'#f1f0c0'
,
9
:
'#d2ffe7'
,
10
:
'#caf3a6'
,
11
:
'#ffdf55'
,
12
:
'#ef77aa'
,
13
:
'#d6dcff'
,
14
:
'#d2f5f0'
}
i
=
0
graphedge
=
[]
weigth
=
[]
sourcedestination
=
[]
source
=
[]
dest
=
[]
edge_width
=
[]
weight1
=
[]
""""drawing edges in graph"""
for
drow
in
range
(
len
(
df_nodes
)):
for
row
in
range
(
len
(
destf_nodes
[
drow
])):
G
.
add_edge
(
df_nodes
[
drow
],
destf_nodes
[
drow
][
row
])
for
row
in
range
(
len
(
hg
.
labalvlues
)):
for
row1
in
range
(
len
(
hg
.
labalvlues
)):
weight1
.
append
(
G
.
number_of_edges
(
hg
.
labalvlues
[
row
],
hg
.
labalvlues
[
row1
]))
print
(
"The number of coccurance from node "
,
hg
.
labalvlues
[
row
],
"to node "
,
hg
.
labalvlues
[
row1
],
": "
,
weight1
[
row1
])
G
.
__setattr__
(
'weight'
,
weight1
)
# print(float(row['Timestamp']))
#G.add_weighted_edges_from([(row['TransactionFrom'], row['TransactionTo'], i*j)])
#print dict_pos
"""label_propagation_communities(G) """
coloring
=
_color_network
(
G
)
# Create a unique label for each node in the graph
labeling
=
{
v
:
k
for
k
,
v
in
enumerate
(
G
)}
print
(
"lable value: "
,
labeling
.
values
())
while
not
_labeling_complete
(
labeling
,
G
):
# Update the labels of every node with the same color.
print
(
"lable value: "
,
labeling
.
values
())
for
color
,
nodes
in
coloring
.
items
():
for
n
in
nodes
:
_update_label
(
n
,
labeling
,
G
)
for
label
in
set
(
labeling
.
values
()):
print
(
"lable value: "
,
labeling
.
values
())
""" findig nodes' adjecencies"""
node_adjacencies
=
[]
node_text
=
[]
for
node
,
adjacencies
in
enumerate
(
G
.
adjacency
()):
node_adjacencies
.
append
(
len
(
adjacencies
[
1
]))
node_text
.
append
(
'# of connections: '
+
str
(
len
(
adjacencies
[
1
])))
G
.
color
=
node_adjacencies
plt
.
figure
(
figsize
=
(
25
,
25
))
options
=
{
'with_labels'
:
True
,
'font_weight'
:
'regular'
,
}
#colors = [color_map[G.node[node][1]] for node in G]
#sizes = [G.node[node]['Timestamp'] * 10 for node in G]
d
=
nx
.
degree_centrality
(
G
)
d_list
=
list
(
d
.
values
())
print
(
"node centrality: "
,
d_list
)
print
(
"node adjacencies: "
,
node_adjacencies
)
for
row
in
range
(
len
(
weigth
)):
edge_width
.
append
([])
for
drow
in
range
(
len
(
weigth
[
row
])):
edge_width
[
row
]
.
append
(
weigth
[
row
][
drow
])
node_size
=
[
v
*
80
for
v
in
d
.
values
()]
#setting node size based on node centrality
edge_width
=
[
row
*
0.5
for
row
in
weight1
]
print
(
"Nodes' Degree: "
,
nx
.
degree
(
G
))
print
(
"Nodes' Betweeness "
,
nx
.
edge_betweenness_centrality
(
G
))
print
(
"Nodes' Betweeness-centrality: "
,
nx
.
betweenness_centrality
(
G
))
"""
Using the spring layout :
- k controls the distance between the nodes and varies between 0 and 1
- iterations is the number of times simulated annealing is run
default k=0.1 and iterations=50
"""
labels2
=
{}
for
idx
,
edge
in
enumerate
(
G
.
edges
):
labels2
[
edge
]
=
"s"
pos_nodes
=
nx
.
spring_layout
(
G
,
k
=
0.25
,
iterations
=
50
)
ax
=
plt
.
gca
()
nx
.
draw
(
G
,
pos_nodes
,
node_color
=
node_adjacencies
,
node_size
=
node_size
,
width
=
2
,
arrowstyle
=
'->'
,
arrowsize
=
10
,
weight
=
weight1
,
edge_color
=
'gray'
,
**
options
)
edge_labels
=
nx
.
get_edge_attributes
(
G
,
'weight'
)
pos_attrs
=
{}
for
node
,
coords
in
pos_nodes
.
items
():
pos_attrs
[
node
]
=
(
coords
[
0
],
coords
[
1
]
+
0.02
)
nx
.
draw_networkx_edge_labels
(
G
,
pos_nodes
,
edge_labels
=
edge_labels
,
font_size
=
10
,
font_color
=
'red'
)
nx
.
draw_networkx_labels
(
G
,
pos_attrs
,
labels
=
labeling
,
font_size
=
10
,
font_color
=
'red'
)
ax
=
plt
.
gca
()
ax
.
collections
[
0
]
.
set_edgecolor
(
"#555555"
)
plt
.
show
()
data-hub/semantic-linking-microservice/app/initialdemo/mult_in_out.json
0 → 100644
View file @
2caa4a25
This diff is collapsed.
Click to expand it.
data-hub/semantic-linking-microservice/app/intelligence_zahra/Processor.py
deleted
100644 → 0
View file @
2cae7884
import
logging
LOGGER
=
logging
.
getLogger
(
__name__
)
class
Processor
:
def
__init__
(
self
):
pass
def
process
(
self
,
traces
:
list
):
LOGGER
.
info
(
f
"called processing with: {str(traces)}"
)
\ No newline at end of file
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment