Commit 2caa4a25 authored by zahra's avatar zahra

Semantic linking was added.

parent 2cae7884
**/__pycache__
**/.vscode
*.log
\ No newline at end of file
**/.idea
*.log
import networkx as nx
import matplotlib.pyplot as plt
import pandas as pd
import json
with open("mult_in_out.json", "r") as json_file:
df_nodes = json.load(json_file)
nodeIds = []
destIds= []
clusterlabels= []
destclusterlabel = []
cluster= []
labalvlues = []
i = 0
for row in df_nodes:
for j in range(len(row['TransactionFrom'])):
print(" Input Ids: ", row['TransactionFrom'][j])
nodeIds.append(row['TransactionFrom'])
print("This is nodes: ", nodeIds)
for row in df_nodes:
destIds.append(row['TransactionTo'])
for row in range(len(nodeIds)):
print(nodeIds[row])
print("Finish InputIDs")
for row in range(len(nodeIds)):
clusterlabels.append(row)
i += 1
print(i)
"""" classifying Inputs"""
"""" Labaling inputs"""
for row in range(len(nodeIds)):
for rown in range(len(nodeIds[row])):
for row1 in range(len(nodeIds)):
for rown1 in range(len(nodeIds[row1])):
if(nodeIds[row][rown]==nodeIds[row1][rown1]):
# print("row: ",row,"row1: ",row1)
if(row < row1):
for row2 in clusterlabels:
if( clusterlabels[row1]== clusterlabels[row2]):
clusterlabels[row2]=clusterlabels[row]
clusterlabels[row1] = clusterlabels[row]
else:
for row2 in clusterlabels:
if (clusterlabels[row] == clusterlabels[row2]):
clusterlabels[row2] = clusterlabels[row1]
clusterlabels[row] = clusterlabels[row1]
print(clusterlabels)
print("cluster labels:", len(clusterlabels))
print("NodeIDs: ", len(nodeIds))
"""" Calculating the number of clusters"""
clusternum = 1
labalvlues.append(clusterlabels[0])
for row in range(len(clusterlabels)):
flag = True
for row1 in range(len(labalvlues)):
if(clusterlabels[row]== labalvlues[row1]):
flag = False
if (flag):
clusternum = + 1
labalvlues.append(clusterlabels[row])
print("label values (source Ids in the network): ", labalvlues, " and the number of clusters is: ", len(labalvlues))
"""" clustering Ids according to their labels"""
for row in range(len(labalvlues)):
cluster.append([])
for row3 in range(len(nodeIds)):
if (labalvlues[row] == clusterlabels[row3]):
cluster[row].extend(nodeIds[row3])
print("clusters: ", cluster)
""" Removing duplicating items in cluster"""
flag = True
while(flag):
for row in range(len(cluster)):
flag= False
for row1 in range(len(cluster[row])):
flag= False
for row2 in range (len(cluster[row])):
if(row1 != row2):
if(cluster[row][row1] == cluster[row][row2]):
del cluster[row][row2]
flag=True
break
if(flag):
break
if(flag):
break
print("cluster:", cluster)
"""" Clustering Destination Ids """
for row in range(len(destIds)):
destclusterlabel.append([])
for row2 in range(len(destIds[row])):
flag = True
for rownum in range(len(labalvlues)):
for row1 in range(len(cluster[rownum])):
if(destIds[row][row2]== cluster[rownum][row1]):
destclusterlabel[row].append(labalvlues[rownum])
flag = False
if(flag):
destclusterlabel.append(destIds[row][row2])
print("destination labels (destination Ids): ", destclusterlabel)
import networkx as nx
import matplotlib.pyplot as plt
from collections import Counter
import HyperGraph as hg
import pandas as pd
import json
import warnings
import csv
import community
import time
import mplleaflet
import values as values
from matplotlib import colors
def _color_network(G):
"""Colors the network so that neighboring nodes all have distinct colors.
Returns a dict keyed by color to a set of nodes with that color.
"""
coloring = dict() # color => set(node)
colors = nx.coloring.greedy_color(G)
for node, color in colors.items():
if color in coloring:
coloring[color].add(node)
else:
coloring[color] = set([node])
return coloring
def _labeling_complete(labeling, G):
"""Determines whether or not LPA is done.
Label propagation is complete when all nodes have a label that is
in the set of highest frequency labels amongst its neighbors.
Nodes with no neighbors are considered complete.
"""
return all(labeling[v] in _most_frequent_labels(v, labeling, G)
for v in G if len(G[v]) > 0)
def _most_frequent_labels(node, labeling, G):
"""Returns a set of all labels with maximum frequency in `labeling`.
Input `labeling` should be a dict keyed by node to labels.
"""
if not G[node]:
# Nodes with no neighbors are themselves a community and are labeled
# accordingly, hence the immediate if statement.
return {labeling[node]}
# Compute the frequencies of all neighbours of node
freqs = Counter(labeling[q] for q in G[node])
max_freq = max(freqs.values())
return {label for label, freq in freqs.items() if freq == max_freq}
def _update_label(node, labeling, G):
"""Updates the label of a node using the Prec-Max tie breaking algorithm
The algorithm is explained in: 'Community Detection via Semi-Synchronous
Label Propagation Algorithms' Cordasco and Gargano, 2011
"""
high_labels = _most_frequent_labels(node, labeling, G)
if len(high_labels) == 1:
labeling[node] = high_labels.pop()
elif len(high_labels) > 1:
# Prec-Max
if labeling[node] not in high_labels:
labeling[node] = max(high_labels)
warnings.filterwarnings('ignore')
#G = nx.DiGraph(directed=True)
G = nx.MultiDiGraph(day="Stackoverflow")
df_nodes = hg.clusterlabels
destf_nodes = hg.destclusterlabel
color_map = {1: '#f09494', 2: '#eebcbc', 3: '#72bbd0', 4: '#91f0a1', 5: '#629fff', 6: '#bcc2f2',
7: '#eebcbc', 8: '#f1f0c0', 9: '#d2ffe7', 10: '#caf3a6', 11: '#ffdf55', 12: '#ef77aa',
13: '#d6dcff', 14: '#d2f5f0'}
i=0
graphedge=[]
weigth=[]
sourcedestination = []
source = []
dest = []
edge_width = []
weight1 = []
""""drawing edges in graph"""
for drow in range(len(df_nodes)):
for row in range(len(destf_nodes[drow])):
G.add_edge(df_nodes[drow], destf_nodes[drow][row])
for row in range(len(hg.labalvlues)):
for row1 in range(len(hg.labalvlues)):
weight1.append(G.number_of_edges(hg.labalvlues[row], hg.labalvlues[row1]))
print("The number of coccurance from node ", hg.labalvlues[row],"to node ", hg.labalvlues[row1], ": ", weight1[row1])
G.__setattr__('weight', weight1)
# print(float(row['Timestamp']))
#G.add_weighted_edges_from([(row['TransactionFrom'], row['TransactionTo'], i*j)])
#print dict_pos
"""label_propagation_communities(G) """
coloring = _color_network(G)
# Create a unique label for each node in the graph
labeling = {v: k for k, v in enumerate(G)}
print("lable value: ", labeling.values())
while not _labeling_complete(labeling, G):
# Update the labels of every node with the same color.
print("lable value: ", labeling.values())
for color, nodes in coloring.items():
for n in nodes:
_update_label(n, labeling, G)
for label in set(labeling.values()):
print("lable value: ", labeling.values())
""" findig nodes' adjecencies"""
node_adjacencies = []
node_text = []
for node, adjacencies in enumerate(G.adjacency()):
node_adjacencies.append(len(adjacencies[1]))
node_text.append('# of connections: '+str(len(adjacencies[1])))
G.color = node_adjacencies
plt.figure(figsize=(25, 25))
options = {
'with_labels': True,
'font_weight': 'regular',
}
#colors = [color_map[G.node[node][1]] for node in G]
#sizes = [G.node[node]['Timestamp'] * 10 for node in G]
d = nx.degree_centrality(G)
d_list= list(d.values())
print ("node centrality: ",d_list)
print("node adjacencies: ", node_adjacencies)
for row in range(len(weigth)):
edge_width.append([])
for drow in range(len(weigth[row])):
edge_width[row].append(weigth[row][drow])
node_size = [v * 80 for v in d.values()] #setting node size based on node centrality
edge_width = [row * 0.5 for row in weight1]
print("Nodes' Degree: ", nx.degree(G))
print("Nodes' Betweeness ", nx.edge_betweenness_centrality(G))
print("Nodes' Betweeness-centrality: ", nx.betweenness_centrality(G))
"""
Using the spring layout :
- k controls the distance between the nodes and varies between 0 and 1
- iterations is the number of times simulated annealing is run
default k=0.1 and iterations=50
"""
labels2 = {}
for idx, edge in enumerate(G.edges):
labels2[edge] = "s"
pos_nodes=nx.spring_layout(G, k=0.25, iterations=50)
ax = plt.gca()
nx.draw(G, pos_nodes,node_color= node_adjacencies, node_size=node_size, width=2, arrowstyle='->',arrowsize=10, weight=weight1, edge_color='gray',**options)
edge_labels = nx.get_edge_attributes(G, 'weight')
pos_attrs = {}
for node, coords in pos_nodes.items():
pos_attrs[node] = (coords[0], coords[1] + 0.02)
nx.draw_networkx_edge_labels(G, pos_nodes, edge_labels=edge_labels, font_size=10, font_color='red')
nx.draw_networkx_labels(G, pos_attrs, labels=labeling,font_size=10, font_color='red')
ax = plt.gca()
ax.collections[0].set_edgecolor("#555555")
plt.show()
import logging
LOGGER = logging.getLogger(__name__)
class Processor:
def __init__(self):
pass
def process(self, traces: list):
LOGGER.info(f"called processing with: {str(traces)}")
\ No newline at end of file
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment