Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
S
SMART
Project
Project
Details
Activity
Releases
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
3
Issues
3
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Registry
Registry
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
UNI-KLU
SMART
Commits
118ddb39
Commit
118ddb39
authored
Oct 29, 2020
by
Bogdan
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
User_Demand Visualizations Bug Fixes
parent
8155f69d
Changes
4
Hide whitespace changes
Inline
Side-by-side
Showing
4 changed files
with
104 additions
and
69 deletions
+104
-69
repository.py
...ub/role-stage-discovery-microservice/app/db/repository.py
+1
-1
vis_cluster_results.py
...ery-microservice/app/visualization/vis_cluster_results.py
+49
-49
visualizeRawData.py
...covery-microservice/app/visualization/visualizeRawData.py
+38
-15
dummy_upload.py
...ata-hub/semantic-linking-microservice/app/dummy_upload.py
+16
-4
No files found.
src/data-hub/role-stage-discovery-microservice/app/db/repository.py
View file @
118ddb39
...
@@ -73,7 +73,7 @@ class Repository(MongoRepositoryBase):
...
@@ -73,7 +73,7 @@ class Repository(MongoRepositoryBase):
collection_name
=
self
.
_layer_collection
collection_name
=
self
.
_layer_collection
criteria
=
{
"use_case"
:
use_case
}
criteria
=
{
"use_case"
:
use_case
}
res
=
super
()
.
delete_entry
(
collection_name
,
criteria
,
True
)
res
=
super
()
.
delete_entry
(
collection_name
,
criteria
,
True
)
print
(
"
###REPOSITORY: res= "
+
str
(
res
))
print
(
"
Deleting UseCase: "
+
str
(
use_case
))
...
...
src/data-hub/role-stage-discovery-microservice/app/visualization/vis_cluster_results.py
View file @
118ddb39
...
@@ -46,9 +46,9 @@ def show_clustering_result(ax, min_pts, clusters: dict):
...
@@ -46,9 +46,9 @@ def show_clustering_result(ax, min_pts, clusters: dict):
colors
=
[
distinct_colors
[
node
[
'cluster_label'
]]
for
node
in
nodes
]
colors
=
[
distinct_colors
[
node
[
'cluster_label'
]]
for
node
in
nodes
]
ax
.
set_title
(
f
'Clustering Result with MinPts={min_pts}'
)
ax
.
set_title
(
f
'Clustering Result with MinPts={min_pts}'
)
ax
.
set_xlabel
(
'
Total_Demand_M
Wh'
)
ax
.
set_xlabel
(
'
User_Demand_k
Wh'
)
ax
.
set_ylabel
(
'Customer'
)
ax
.
set_ylabel
(
'Customer'
)
ax
.
scatter
(
[
n
[
'
Total_Demand_M
Wh'
]
for
n
in
nodes
],
ax
.
scatter
(
[
n
[
'
User_Demand_k
Wh'
]
for
n
in
nodes
],
[
n
[
'Customer'
]
for
n
in
nodes
],
[
n
[
'Customer'
]
for
n
in
nodes
],
c
=
colors
)
c
=
colors
)
...
@@ -72,14 +72,14 @@ def show_clusteringSingleFeature_result(ax, min_pts, clusters: dict):
...
@@ -72,14 +72,14 @@ def show_clusteringSingleFeature_result(ax, min_pts, clusters: dict):
colors
=
[
distinct_colors
[
node
[
'cluster_label'
]]
for
node
in
nodes
]
colors
=
[
distinct_colors
[
node
[
'cluster_label'
]]
for
node
in
nodes
]
ax
.
set_title
(
f
'Clustering Result with MinPts={min_pts}'
)
ax
.
set_title
(
f
'Clustering Result with MinPts={min_pts}'
)
ax
.
set_xlabel
(
'
Total_Demand_M
Wh'
)
ax
.
set_xlabel
(
'
User_Demand_k
Wh'
)
ax
.
grid
(
True
,
axis
=
'x'
)
ax
.
grid
(
True
,
axis
=
'x'
)
#ax.set_ylabel('Customer')
#ax.set_ylabel('Customer')
ax
.
scatter
(
[
n
[
'
Total_Demand_M
Wh'
]
for
n
in
nodes
],
ax
.
scatter
(
[
n
[
'
User_Demand_k
Wh'
]
for
n
in
nodes
],
[
0
for
n
in
nodes
],
[
0
for
n
in
nodes
],
c
=
colors
)
c
=
colors
)
def
show_clusteringSingleFeatureDensity_result
(
ax
,
min_pts
,
clusters
:
dict
):
def
show_clusteringSingleFeatureDensity
BoxPlot
_result
(
ax
,
min_pts
,
clusters
:
dict
):
labels
=
clusters
.
keys
()
labels
=
clusters
.
keys
()
# flatten values in dict
# flatten values in dict
...
@@ -95,7 +95,7 @@ def show_clusteringSingleFeatureDensity_result(ax, min_pts, clusters: dict):
...
@@ -95,7 +95,7 @@ def show_clusteringSingleFeatureDensity_result(ax, min_pts, clusters: dict):
if
not
checkKey
(
mydict
,
n
[
'cluster_label'
]):
if
not
checkKey
(
mydict
,
n
[
'cluster_label'
]):
mydict
[
n
[
'cluster_label'
]]
=
[]
mydict
[
n
[
'cluster_label'
]]
=
[]
mydict
[
n
[
'cluster_label'
]]
.
append
(
n
[
'
Total_Demand_M
Wh'
])
mydict
[
n
[
'cluster_label'
]]
.
append
(
n
[
'
User_Demand_k
Wh'
])
...
@@ -130,10 +130,10 @@ def show_clusteringSingleFeatureDensity_result(ax, min_pts, clusters: dict):
...
@@ -130,10 +130,10 @@ def show_clusteringSingleFeatureDensity_result(ax, min_pts, clusters: dict):
plt
.
setp
(
bp
[
'medians'
][
0
],
color
=
distinct_colors
[
cluster_label
])
plt
.
setp
(
bp
[
'medians'
][
0
],
color
=
distinct_colors
[
cluster_label
])
ax
.
set_title
(
f
'Clustering Result with MinPts={min_pts}'
)
ax
.
set_title
(
f
'Clustering Result with MinPts={min_pts}'
)
ax
.
set_xlabel
(
'
Total_Demand_M
Wh'
)
ax
.
set_xlabel
(
'
User_Demand_k
Wh'
)
#ax.set_ylabel('Cluster Label')
#ax.set_ylabel('Cluster Label')
ax
.
grid
(
True
,
axis
=
'x'
)
ax
.
grid
(
True
,
axis
=
'x'
)
# ax.scatter( [n['
Total_Demand_M
Wh'] for n in nodes],
# ax.scatter( [n['
User_Demand_k
Wh'] for n in nodes],
# [0 for n in nodes],
# [0 for n in nodes],
# c=colors)
# c=colors)
...
@@ -143,14 +143,14 @@ def run_clustering(min_points, dataset):
...
@@ -143,14 +143,14 @@ def run_clustering(min_points, dataset):
clusterer
=
Clusterer
(
min_points
=
min_points
)
clusterer
=
Clusterer
(
min_points
=
min_points
)
return
clusterer
.
cluster_dataset
(
return
clusterer
.
cluster_dataset
(
dataset
=
dataset
,
dataset
=
dataset
,
features
=
[
'
Total_Demand_M
Wh'
,
'Customer'
]
features
=
[
'
User_Demand_k
Wh'
,
'Customer'
]
)
)
def
run_clustering_SingleFeature
(
min_points
,
dataset
):
def
run_clustering_SingleFeature
(
min_points
,
dataset
):
clusterer
=
Clusterer
(
min_points
=
min_points
)
clusterer
=
Clusterer
(
min_points
=
min_points
)
return
clusterer
.
cluster_dataset
(
return
clusterer
.
cluster_dataset
(
dataset
=
dataset
,
dataset
=
dataset
,
features
=
[
'
Total_Demand_M
Wh'
]
features
=
[
'
User_Demand_k
Wh'
]
)
)
# res: Dict[Any, ClusterResult] = clusterer.cluster_dataset(
# res: Dict[Any, ClusterResult] = clusterer.cluster_dataset(
...
@@ -173,7 +173,7 @@ def createDataset(inputDict):
...
@@ -173,7 +173,7 @@ def createDataset(inputDict):
for
entry
in
inputSimListOfDict
:
for
entry
in
inputSimListOfDict
:
newDict
=
{}
newDict
=
{}
try
:
try
:
newDict
[
"
Total_Demand_MWh"
]
=
float
(
entry
[
"Total_Demand_M
Wh"
])
newDict
[
"
User_Demand_kWh"
]
=
float
(
entry
[
"User_Demand_k
Wh"
])
newDict
[
"Customer"
]
=
float
(
entry
[
"Customer"
])
newDict
[
"Customer"
]
=
float
(
entry
[
"Customer"
])
dataset
.
append
(
newDict
)
dataset
.
append
(
newDict
)
except
:
except
:
...
@@ -204,10 +204,10 @@ if __name__ == '__main__':
...
@@ -204,10 +204,10 @@ if __name__ == '__main__':
#dataset = [{'1':n[0], '2':n[1]} for n in nodes]
#dataset = [{'1':n[0], '2':n[1]} for n in nodes]
JWT_TOKEN
=
"eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJ1c2VybmFtZSI6InJlZ3VsYXJAaXRlYy5hYXUuYXQiLCJjcmVhdGVkX2F0IjoiMjAyMC0xMC0yMCAxNDoyNDoxMi45MzI3OTAiLCJ2YWxpZF91bnRpbCI6IjIwMjAtMTAtMjEgMTQ6MjQ6MTIuOTMyNzkwIn0.qzaDauyEA4pAnw8K8ik6jTtbEOY24q159GDYbvByaJ4"
JWT_TOKEN
=
"eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJ1c2VybmFtZSI6InJlZ3VsYXJAaXRlYy5hYXUuYXQiLCJjcmVhdGVkX2F0IjoiMjAyMC0xMC0yMCAxNDoyNDoxMi45MzI3OTAiLCJ2YWxpZF91bnRpbCI6IjIwMjAtMTAtMjEgMTQ6MjQ6MTIuOTMyNzkwIn0.qzaDauyEA4pAnw8K8ik6jTtbEOY24q159GDYbvByaJ4"
#r = requests.get('https://articonf1.itec.aau.at:30103/api/paper/paper/layers/Demand_Layer/nodes', timeout=15)
r
=
requests
.
get
(
r
=
requests
.
get
(
url
=
'https://articonf1.itec.aau.at:30103/api/paper/paper/layers/Demand_Layer/nodes'
,
url
=
'https://articonf1.itec.aau.at:30103/api/paper/paper/layers/
User_
Demand_Layer/nodes'
,
timeout
=
15
,
timeout
=
15
,
headers
=
{
"Authorization"
:
f
"Bearer {JWT_TOKEN}"
},
headers
=
{
"Authorization"
:
f
"Bearer {JWT_TOKEN}"
},
verify
=
False
# ignore ssl error)
verify
=
False
# ignore ssl error)
...
@@ -243,66 +243,66 @@ if __name__ == '__main__':
...
@@ -243,66 +243,66 @@ if __name__ == '__main__':
# dataset = createDataset(inputSimListOfDict)
# dataset = createDataset(inputSimListOfDict)
# print("Started TEST Clustering") #500 = 4 clusters
# print("Started TEST Clustering") #500 = 4 clusters
# clusters = run_clustering_SingleFeature(250, dataset)
# clusters = run_clustering_SingleFeature(250, dataset)
# show_clusteringSingleFeatureDensity_result(ax1,250,clusters)
# show_clusteringSingleFeatureDensity
BoxPlot
_result(ax1,250,clusters)
# dataset = createDataset(inputSimListOfDict)
# dataset = createDataset(inputSimListOfDict)
# print("Started TEST Clustering") #500 = 4 clusters
# print("Started TEST Clustering") #500 = 4 clusters
# clusters = run_clustering_SingleFeature(500, dataset)
# clusters = run_clustering_SingleFeature(500, dataset)
# show_clusteringSingleFeatureDensity_result(ax2,500,clusters)
# show_clusteringSingleFeatureDensity
BoxPlot
_result(ax2,500,clusters)
# dataset = createDataset(inputSimListOfDict)
# dataset = createDataset(inputSimListOfDict)
# print("Started TEST Clustering") #500 = 4 clusters
# print("Started TEST Clustering") #500 = 4 clusters
# clusters = run_clustering_SingleFeature(750, dataset)
# clusters = run_clustering_SingleFeature(750, dataset)
# show_clusteringSingleFeatureDensity_result(ax3,750,clusters)
# show_clusteringSingleFeatureDensity
BoxPlot
_result(ax3,750,clusters)
# dataset = createDataset(inputSimListOfDict)
# dataset = createDataset(inputSimListOfDict)
# print("Started TEST Clustering") #500 = 4 clusters
# print("Started TEST Clustering") #500 = 4 clusters
# clusters = run_clustering_SingleFeature(1000, dataset)
# clusters = run_clustering_SingleFeature(1000, dataset)
# show_clusteringSingleFeatureDensity_result(ax4,1000,clusters)
# show_clusteringSingleFeatureDensity
BoxPlot
_result(ax4,1000,clusters)
print
(
"Started 1st Clustering"
)
#
print("Started 1st Clustering")
dataset
=
createDataset
(
inputSimListOfDict
)
#
dataset = createDataset(inputSimListOfDict)
clusters
=
run_clustering_SingleFeature
(
50
,
dataset
)
# clusters = run_clustering_SingleFeature(15
, dataset)
show_clusteringSingleFeature_result
(
ax1
,
50
,
clusters
)
# show_clusteringSingleFeature_result(ax1, 15
, clusters)
print
(
"Started 2nd Clustering"
)
#
print("Started 2nd Clustering")
dataset
=
createDataset
(
inputSimListOfDict
)
#
dataset = createDataset(inputSimListOfDict)
clusters
=
run_clustering_SingleFeature
(
100
,
dataset
)
# clusters = run_clustering_SingleFeature(25
, dataset)
show_clusteringSingleFeature_result
(
ax2
,
100
,
clusters
)
# show_clusteringSingleFeature_result(ax2, 25
, clusters)
print
(
"Started 3rd Clustering"
)
#
print("Started 3rd Clustering")
dataset
=
createDataset
(
inputSimListOfDict
)
#
dataset = createDataset(inputSimListOfDict)
clusters
=
run_clustering_SingleFeature
(
1
50
,
dataset
)
# clusters = run_clustering_SingleFeature(
50, dataset)
show_clusteringSingleFeature_result
(
ax3
,
1
50
,
clusters
)
# show_clusteringSingleFeature_result(ax3,
50, clusters)
print
(
"Started 4th Clustering"
)
#
print("Started 4th Clustering")
dataset
=
createDataset
(
inputSimListOfDict
)
#
dataset = createDataset(inputSimListOfDict)
clusters
=
run_clustering_SingleFeature
(
25
0
,
dataset
)
# clusters = run_clustering_SingleFeature(10
0, dataset)
show_clusteringSingleFeature_result
(
ax4
,
25
0
,
clusters
)
# show_clusteringSingleFeature_result(ax4, 10
0, clusters)
#
dataset = createDataset(inputSimListOfDict)
dataset
=
createDataset
(
inputSimListOfDict
)
#
print("Started 1st Clustering")
print
(
"Started 1st Clustering"
)
#
clusters = run_clustering(10, dataset)
clusters
=
run_clustering
(
10
,
dataset
)
#
show_clustering_result(ax1, 10, clusters)
show_clustering_result
(
ax1
,
10
,
clusters
)
#
dataset = createDataset(inputSimListOfDict)
dataset
=
createDataset
(
inputSimListOfDict
)
#
print("Started 2nd Clustering")
print
(
"Started 2nd Clustering"
)
#
clusters = run_clustering(15, dataset)
clusters
=
run_clustering
(
15
,
dataset
)
#
show_clustering_result(ax2, 15, clusters)
show_clustering_result
(
ax2
,
15
,
clusters
)
#
dataset = createDataset(inputSimListOfDict)
dataset
=
createDataset
(
inputSimListOfDict
)
#
print("Started 3rd Clustering")
print
(
"Started 3rd Clustering"
)
#
clusters = run_clustering(25, dataset)
clusters
=
run_clustering
(
25
,
dataset
)
#
show_clustering_result(ax3, 25, clusters)
show_clustering_result
(
ax3
,
25
,
clusters
)
#
dataset = createDataset(inputSimListOfDict)
dataset
=
createDataset
(
inputSimListOfDict
)
#
print("Started 4th Clustering")
print
(
"Started 4th Clustering"
)
#
clusters = run_clustering(50, dataset)
clusters
=
run_clustering
(
50
,
dataset
)
#
show_clustering_result(ax4, 50, clusters)
show_clustering_result
(
ax4
,
50
,
clusters
)
#agePhysics = [ 25, 31, 31, 31, 12,28,29,31,33,34,35,36,34,39,40,41,48 ]
#agePhysics = [ 25, 31, 31, 31, 12,28,29,31,33,34,35,36,34,39,40,41,48 ]
# basic plot
# basic plot
...
...
src/data-hub/role-stage-discovery-microservice/app/visualization/visualizeRawData.py
View file @
118ddb39
...
@@ -15,7 +15,8 @@ def mainViz():
...
@@ -15,7 +15,8 @@ def mainViz():
distributionEnergy
=
dict
()
distributionEnergy
=
dict
()
distributionHeating
=
dict
()
distributionHeating
=
dict
()
distributionPrice
=
dict
()
distributionPrice
=
dict
()
distributionDemand
=
dict
()
distributionTotalDemand
=
dict
()
distributionUserDemand
=
dict
()
for
entry
in
inputDict
:
for
entry
in
inputDict
:
try
:
try
:
...
@@ -57,10 +58,21 @@ def mainViz():
...
@@ -57,10 +58,21 @@ def mainViz():
try
:
try
:
tdVal
=
round
(
float
(
entry
[
'Total_Demand_MWh'
]),
2
)
tdVal
=
round
(
float
(
entry
[
'Total_Demand_MWh'
]),
2
)
if
(
checkKey
(
distributionDemand
,
tdVal
)):
if
(
checkKey
(
distribution
Total
Demand
,
tdVal
)):
distributionDemand
[
tdVal
]
+=
1
distribution
Total
Demand
[
tdVal
]
+=
1
else
:
else
:
distributionDemand
[
tdVal
]
=
1
distributionTotalDemand
[
tdVal
]
=
1
except
:
pass
try
:
eVal
=
round
(
float
(
entry
[
'Energy_Consumption_kWh'
]),
2
)
hVal
=
round
(
float
(
entry
[
'Heating_Consumption_kWh'
]),
2
)
udVal
=
round
((
eVal
+
hVal
),
2
)
if
(
checkKey
(
distributionUserDemand
,
udVal
)):
distributionUserDemand
[
udVal
]
+=
1
else
:
distributionUserDemand
[
udVal
]
=
1
except
:
except
:
pass
pass
...
@@ -95,13 +107,13 @@ def mainViz():
...
@@ -95,13 +107,13 @@ def mainViz():
#plt.xticks(np.linspace(0,4.5,num=20))
#plt.xticks(np.linspace(0,4.5,num=20))
## Heating
## Heating
list1
=
sorted
(
distributionHeating
.
items
())
#
list1 = sorted(distributionHeating.items())
x2
,
y2
=
zip
(
*
list1
)
#
x2,y2 = zip(*list1)
plt
.
bar
(
x2
,
y2
,
color
=
'red'
,
label
=
"Heating"
,
width
=
0.01
)
#
plt.bar(x2,y2,color='red',label="Heating", width=0.01)
plt
.
legend
()
#
plt.legend()
plt
.
title
(
'Heating Consumption'
)
#
plt.title('Heating Consumption')
plt
.
xlabel
(
'kWh'
)
#
plt.xlabel('kWh')
plt
.
show
()
#
plt.show()
## Price
## Price
# #plt.xticks(np.linspace(0,100,num=10))
# #plt.xticks(np.linspace(0,100,num=10))
...
@@ -114,13 +126,24 @@ def mainViz():
...
@@ -114,13 +126,24 @@ def mainViz():
# plt.show()
# plt.show()
### Demand
### Demand
plt
.
xticks
(
np
.
linspace
(
0
,
100
,
num
=
10
))
list1
=
sorted
(
distributionTotalDemand
.
items
())
x2
,
y2
=
zip
(
*
list1
)
plt
.
bar
(
x2
,
y2
,
color
=
'black'
,
label
=
"Total Demand"
,
width
=
5
)
plt
.
legend
()
plt
.
title
(
'Total Demand'
)
plt
.
xlabel
(
'MWh'
)
plt
.
show
()
## User Demand
#plt.xticks(np.linspace(0,100,num=10))
#plt.xticks(np.linspace(0,100,num=10))
# list1 = sorted(distributionDemand.items())
# list1 = sorted(distribution
User
Demand.items())
# x2,y2 = zip(*list1)
# x2,y2 = zip(*list1)
# plt.bar(x2,y2,color='
gray',label="Demand", width=5
)
# plt.bar(x2,y2,color='
orange',label="User Demand", width=0.01
)
# plt.legend()
# plt.legend()
# plt.title('
Total
Demand')
# plt.title('
User
Demand')
# plt.xlabel('
M
Wh')
# plt.xlabel('
k
Wh')
# plt.show()
# plt.show()
...
...
src/data-hub/semantic-linking-microservice/app/dummy_upload.py
View file @
118ddb39
...
@@ -38,7 +38,7 @@ if __name__ == '__main__':
...
@@ -38,7 +38,7 @@ if __name__ == '__main__':
repo
.
delete_nodes_for_use_case
(
"paper"
)
repo
.
delete_nodes_for_use_case
(
"paper"
)
print
(
"###DELETED NODES FROM SEMANTIC LINKING - PAPER USE CASE"
)
print
(
"###DELETED NODES FROM SEMANTIC LINKING - PAPER USE CASE"
)
transactionList
=
[]
with
open
(
CSV_FILE
,
'r'
)
as
file
:
with
open
(
CSV_FILE
,
'r'
)
as
file
:
reader
=
csv
.
reader
(
file
)
reader
=
csv
.
reader
(
file
)
...
@@ -60,6 +60,11 @@ if __name__ == '__main__':
...
@@ -60,6 +60,11 @@ if __name__ == '__main__':
transaction
[
'docType'
]
=
'paper'
transaction
[
'docType'
]
=
'paper'
for
idx
in
range
(
len
(
row
)):
for
idx
in
range
(
len
(
row
)):
transaction
[
titles
[
idx
]]
=
row
[
idx
]
transaction
[
titles
[
idx
]]
=
row
[
idx
]
# also include the user demand, as Total_Demand_WMh is not per user
energy_cons
=
float
(
transaction
[
'Energy_Consumption_kWh'
])
if
transaction
[
'Energy_Consumption_kWh'
]
is
not
None
and
transaction
[
'Energy_Consumption_kWh'
]
!=
""
else
0
heating_cons
=
float
(
transaction
[
'Heating_Consumption_kWh'
])
if
transaction
[
'Heating_Consumption_kWh'
]
is
not
None
and
transaction
[
'Heating_Consumption_kWh'
]
!=
""
else
0
transaction
[
'User_Demand_kWh'
]
=
heating_cons
+
energy_cons
if
transaction
[
'Customer'
]
!=
old_c
:
if
transaction
[
'Customer'
]
!=
old_c
:
customerCount
+=
1
customerCount
+=
1
...
@@ -84,9 +89,16 @@ if __name__ == '__main__':
...
@@ -84,9 +89,16 @@ if __name__ == '__main__':
if
(
upload_condition
):
if
(
upload_condition
):
upload_transaction
(
transaction
)
upload_transaction
(
transaction
)
print
(
f
"uploading for {old_c}"
)
transactionList
.
append
(
transaction
)
#print(f"uploading for {old_c}")
rowCount
+=
1
rowCount
+=
1
outputJSON
=
json
.
dumps
(
transactionList
,
default
=
lambda
o
:
o
.
__dict__
,
indent
=
4
)
try
:
with
open
(
'EnergyDataSubset.json'
,
'w'
)
as
outfile
:
outfile
.
write
(
outputJSON
)
except
ValueError
:
print
(
"Error occured when writing the resultSimilarityDict file"
)
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment